Home
Class 12
MATHS
int1/(x^2(x^4+1)^(3/4))dx...

`int1/(x^2(x^4+1)^(3/4))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx \] ### Step 2: Factor out \( x^4 \) Notice that we can factor \( x^4 \) from \( x^4 + 1 \): \[ I = \int \frac{1}{x^2 \left( x^4 \left(1 + \frac{1}{x^4}\right) \right)^{3/4}} \, dx \] This simplifies to: \[ I = \int \frac{1}{x^2 \cdot x^{3} \cdot \left(1 + \frac{1}{x^4}\right)^{3/4}} \, dx \] \[ = \int \frac{1}{x^5 \left(1 + \frac{1}{x^4}\right)^{3/4}} \, dx \] ### Step 3: Substitute \( t = 1 + \frac{1}{x^4} \) Let \( t = 1 + \frac{1}{x^4} \). Then, we differentiate: \[ dt = -\frac{4}{x^5} \, dx \quad \Rightarrow \quad dx = -\frac{x^5}{4} \, dt \] Substituting \( x^5 = \frac{1}{(t - 1)^{1/4}} \) into the integral gives: \[ I = \int \frac{-\frac{x^5}{4} \, dt}{x^5 t^{3/4}} = -\frac{1}{4} \int t^{-3/4} \, dt \] ### Step 4: Integrate Now we can integrate: \[ -\frac{1}{4} \int t^{-3/4} \, dt = -\frac{1}{4} \cdot \frac{t^{1/4}}{1/4} + C = -t^{1/4} + C \] ### Step 5: Substitute Back Substituting back for \( t \): \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C \] ### Final Answer Thus, the final result of the integral is: \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

int (dx)/(x^(2)(x^(4)+1)^(3/4))is

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

evaluate: int1/((x^2+1)(x^2+4))dx

int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))

Evaluate : int(dx)/(x^(2)(x^(4) + 1)^((3)/(4)))

int(x^2)/(1-x^4)dx

int1/(x^2-4x+8)dx