Home
Class 12
MATHS
Evaluate int(1)/(1+sinx)dx....

Evaluate `int(1)/(1+sinx)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{1+\sin x} \, dx \), we can follow these steps: ### Step 1: Rationalize the Denominator We start with the integral: \[ I = \int \frac{1}{1+\sin x} \, dx \] To simplify this, we multiply the numerator and the denominator by \( 1 - \sin x \): \[ I = \int \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} \, dx \] ### Step 2: Simplify the Denominator The denominator can be simplified using the difference of squares: \[ (1 + \sin x)(1 - \sin x) = 1 - \sin^2 x \] Using the Pythagorean identity \( \cos^2 x = 1 - \sin^2 x \), we rewrite the integral: \[ I = \int \frac{1 - \sin x}{\cos^2 x} \, dx \] ### Step 3: Separate the Integral Now we can separate the integral into two parts: \[ I = \int \frac{1}{\cos^2 x} \, dx - \int \frac{\sin x}{\cos^2 x} \, dx \] This gives us: \[ I = \int \sec^2 x \, dx - \int \tan x \sec x \, dx \] ### Step 4: Integrate Each Part Now we can integrate each part: 1. The integral of \( \sec^2 x \) is \( \tan x \): \[ \int \sec^2 x \, dx = \tan x \] 2. The integral of \( \tan x \sec x \) is \( \sec x \): \[ \int \tan x \sec x \, dx = \sec x \] Putting it all together, we have: \[ I = \tan x - \sec x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{1+\sin x} \, dx = \tan x - \sec x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(1+sinx)\ dx

Evaluate: int1/(1-2sinx)dx

Evaluate: int1/(1+sinx)dx

Evaluate: int1/(1-2sinx)\ dx

Evaluate : int(tan^(2)x)dx Evalauate: int1/(1+sinx) dx

Evaluate: int1/(5-4sinx)\ dx

Evaluate: int1/(5-4sinx)\ dx

Evaluate: int1/(1+sinx+cosx)dx

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx