Home
Class 12
MATHS
(i) int(sinx)/(sqrt(4+ cos^(2) x)) dx " ...

`(i) int(sinx)/(sqrt(4+ cos^(2) x)) dx " "(ii) int(x^(2))/(sqrt(9+x^(6)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the two parts of the question step by step. ### Part (i): **Integral to solve:** \[ \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx \] **Step 1: Substitution** Let \( \cos x = t \). Then, differentiating both sides gives: \[ -\sin x \, dx = dt \quad \Rightarrow \quad \sin x \, dx = -dt \] **Step 2: Rewrite the integral** Substituting \( \sin x \, dx \) and \( \cos x \) into the integral: \[ \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx = \int \frac{-dt}{\sqrt{4 + t^2}} \] **Step 3: Change the limits** This becomes: \[ -\int \frac{dt}{\sqrt{4 + t^2}} \] **Step 4: Use the integral formula** The integral \( \int \frac{dt}{\sqrt{a^2 + t^2}} = \log(t + \sqrt{a^2 + t^2}) + C \) where \( a = 2 \): \[ -\log(t + \sqrt{4 + t^2}) + C \] **Step 5: Substitute back for \( t \)** Now substituting back \( t = \cos x \): \[ -\log(\cos x + \sqrt{4 + \cos^2 x}) + C \] ### Final Answer for Part (i): \[ -\log(\cos x + \sqrt{4 + \cos^2 x}) + C \] --- ### Part (ii): **Integral to solve:** \[ \int \frac{x^2}{\sqrt{9 + x^6}} \, dx \] **Step 1: Rewrite the expression** Notice that \( x^6 = (x^3)^2 \) and \( 9 = 3^2 \): \[ \int \frac{x^2}{\sqrt{3^2 + (x^3)^2}} \, dx \] **Step 2: Substitution** Let \( x^3 = t \). Then, differentiating gives: \[ 3x^2 \, dx = dt \quad \Rightarrow \quad x^2 \, dx = \frac{dt}{3} \] **Step 3: Rewrite the integral** Substituting into the integral gives: \[ \int \frac{x^2 \, dx}{\sqrt{9 + x^6}} = \int \frac{\frac{dt}{3}}{\sqrt{9 + t^2}} = \frac{1}{3} \int \frac{dt}{\sqrt{9 + t^2}} \] **Step 4: Use the integral formula** Using the formula \( \int \frac{dt}{\sqrt{a^2 + t^2}} = \log(t + \sqrt{a^2 + t^2}) + C \) where \( a = 3 \): \[ \frac{1}{3} \log(t + \sqrt{9 + t^2}) + C \] **Step 5: Substitute back for \( t \)** Now substituting back \( t = x^3 \): \[ \frac{1}{3} \log(x^3 + \sqrt{9 + x^6}) + C \] ### Final Answer for Part (ii): \[ \frac{1}{3} \log(x^3 + \sqrt{9 + x^6}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int(2cos x)/(sqrt(1-4cos^(2) x))dx " "(ii) int (x+1)/(sqrt(x^(2)+1))dx

(i) int(dx)/(sqrt(4x^(2)-6))

int(dx)/(sqrt(1-9x^(2)))

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

(i) int(dx)/(x sqrt(4x^(2)-9))

int(dx)/(sqrt(9-25x^(2)))

Evaluate: int(sinx)/(sqrt(4cos^2x-1))\ dx

Evaluate: int(sinx)/(sqrt(4cos^2x-1))\ dx