Home
Class 12
MATHS
intsqrt(1+2 tan x (tan x + sec x ) ) dx...

`intsqrt(1+2 tan x (tan x + sec x ) ) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + 2 \tan x (\tan x + \sec x)} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root We start with the expression inside the square root: \[ 1 + 2 \tan x (\tan x + \sec x) \] Expanding this, we have: \[ 1 + 2 \tan^2 x + 2 \tan x \sec x \] ### Step 2: Use the identity \( \sec^2 x - \tan^2 x = 1 \) We can rewrite \( 1 \) as \( \sec^2 x - \tan^2 x \): \[ \sec^2 x - \tan^2 x + 2 \tan^2 x + 2 \tan x \sec x \] This simplifies to: \[ \sec^2 x + \tan^2 x + 2 \tan x \sec x \] ### Step 3: Recognize the perfect square Notice that: \[ \tan^2 x + 2 \tan x \sec x + \sec^2 x = (\tan x + \sec x)^2 \] Thus, we can rewrite the integral as: \[ \int \sqrt{(\tan x + \sec x)^2} \, dx \] Since \( \tan x + \sec x \) is positive in the interval we are considering, we have: \[ \sqrt{(\tan x + \sec x)^2} = \tan x + \sec x \] ### Step 4: Integrate Now we can integrate: \[ \int (\tan x + \sec x) \, dx = \int \tan x \, dx + \int \sec x \, dx \] ### Step 5: Use known integrals The integrals of \( \tan x \) and \( \sec x \) are: \[ \int \tan x \, dx = -\log |\cos x| + C_1 \] \[ \int \sec x \, dx = \log |\sec x + \tan x| + C_2 \] Combining these, we get: \[ \int (\tan x + \sec x) \, dx = -\log |\cos x| + \log |\sec x + \tan x| + C \] ### Final Result Thus, the final result of the integral is: \[ \int \sqrt{1 + 2 \tan x (\tan x + \sec x)} \, dx = \log |\sec x + \tan x| - \log |\cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int {1+2 tan x (tan x + sec x )}^(1//2) dx=?

int (1 + tan x )/ (x + log sec x)dx

Evaluate: int e^(x) (tan x + log sec x) dx .

int(secx- tan x)/(sec x+ tan x) dx

int tan 2 x tan 3x tan 5x dx = log | sec^(a) 2x. Sec^(b) 3x. Sec^(c) 5x| + k . Then:\

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

2. int(tan x)/(log sec x)dx

int sec x tan x sqrt(tan^(2) x-4) dx

int (dx)/(tan x+ cot x+ sec x+ cosec x)