Home
Class 12
MATHS
int sec x tan x sqrt(tan^(2) x-4) dx...

`int sec x tan x sqrt(tan^(2) x-4) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sec x \tan x \sqrt{\tan^2 x - 4} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sec x \tan x \sqrt{\tan^2 x - 4} \, dx \] ### Step 2: Use Trigonometric Identity Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can rewrite \( \tan^2 x - 4 \) as: \[ \tan^2 x - 4 = \sec^2 x - 1 - 4 = \sec^2 x - 5 \] Thus, the integral becomes: \[ \int \sec x \tan x \sqrt{\sec^2 x - 5} \, dx \] ### Step 3: Substitution Let \( t = \sec x \). Then, the derivative \( dt = \sec x \tan x \, dx \). Therefore, we can rewrite the integral as: \[ \int \sqrt{t^2 - 5} \, dt \] ### Step 4: Use a Standard Integral Formula We recognize that \( \sqrt{t^2 - 5} \) can be integrated using the formula for the integral of the form \( \int \sqrt{x^2 - a^2} \, dx \): \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + C \] In our case, \( a^2 = 5 \). ### Step 5: Apply the Formula Applying the formula, we have: \[ \int \sqrt{t^2 - 5} \, dt = \frac{t}{2} \sqrt{t^2 - 5} - \frac{5}{2} \log(t + \sqrt{t^2 - 5}) + C \] ### Step 6: Substitute Back Now we substitute back \( t = \sec x \): \[ = \frac{\sec x}{2} \sqrt{\sec^2 x - 5} - \frac{5}{2} \log(\sec x + \sqrt{\sec^2 x - 5}) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sec x \tan x \sqrt{\tan^2 x - 4} \, dx = \frac{\sec x}{2} \sqrt{\sec^2 x - 5} - \frac{5}{2} \log(\sec x + \sqrt{\sec^2 x - 5}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec x tan x sqrt(sec^(2) x+1)dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

int x sec x*tan xdx

Evaluate : int ( sqrt( tan x) - sqrt( cot x)) dx

int(1)/(sqrt(1-tan^(2)x))dx

int(secx- tan x)/(sec x+ tan x) dx

Evaluate int(tanx dx)/(sqrt(2+3tan^(2)x)).

int(sec x)/(tan^(2)x)dx

Evaluate: int(sec^2x)/(sqrt(4+tan^2x))\ dx

Evaluate: int(sec^2x)/(sqrt(tan^2x+4))dx