Home
Class 12
MATHS
int sqrt(2-3x^(2))dx...

`int sqrt(2-3x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{2 - 3x^2} \, dx \), we will follow a series of steps to simplify and evaluate the integral. ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sqrt{2 - 3x^2} \, dx \] We can factor out the constant from the square root: \[ = \int \sqrt{3} \sqrt{\frac{2}{3} - x^2} \, dx \] This allows us to take \( \sqrt{3} \) outside of the integral: \[ = \sqrt{3} \int \sqrt{\frac{2}{3} - x^2} \, dx \] ### Step 2: Use a Trigonometric Substitution We can use the identity for the integral of the form \( \int \sqrt{a^2 - x^2} \, dx \). Here, we identify \( a^2 = \frac{2}{3} \), so \( a = \sqrt{\frac{2}{3}} \). Using the substitution \( x = a \sin(\theta) \), we have: \[ dx = a \cos(\theta) \, d\theta \] Substituting \( x = \sqrt{\frac{2}{3}} \sin(\theta) \) into the integral gives: \[ = \sqrt{3} \int \sqrt{\frac{2}{3} - \left(\sqrt{\frac{2}{3}} \sin(\theta)\right)^2} \cdot \sqrt{\frac{2}{3}} \cos(\theta) \, d\theta \] This simplifies to: \[ = \sqrt{3} \int \sqrt{\frac{2}{3} (1 - \sin^2(\theta))} \cdot \sqrt{\frac{2}{3}} \cos(\theta) \, d\theta \] Since \( 1 - \sin^2(\theta) = \cos^2(\theta) \), we have: \[ = \sqrt{3} \int \sqrt{\frac{2}{3}} \cos(\theta) \cdot \sqrt{\frac{2}{3}} \cos(\theta) \, d\theta \] \[ = \frac{2}{3} \sqrt{3} \int \cos^2(\theta) \, d\theta \] ### Step 3: Integrate \( \cos^2(\theta) \) Using the identity \( \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \): \[ = \frac{2}{3} \sqrt{3} \int \frac{1 + \cos(2\theta)}{2} \, d\theta \] \[ = \frac{1}{3} \sqrt{3} \left( \theta + \frac{1}{2} \sin(2\theta) \right) + C \] ### Step 4: Back Substitute Now we need to back substitute \( \theta \) in terms of \( x \). Recall that: \[ \sin(\theta) = \frac{\sqrt{3}}{\sqrt{2}} x \] Thus: \[ \theta = \sin^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}} x\right) \] Substituting back gives: \[ = \frac{1}{3} \sqrt{3} \left( \sin^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}} x\right) + \frac{1}{2} \sin\left(2 \sin^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}} x\right)\right) \right) + C \] ### Final Answer The final answer for the integral is: \[ \int \sqrt{2 - 3x^2} \, dx = \frac{1}{3} \sqrt{3} \left( \sin^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}} x\right) + \frac{1}{2} \sin\left(2 \sin^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}} x\right)\right) \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

2. int sqrt(3-2x-2x^(2))dx

(2) int x sqrt(3-2x-x^(2))dx

Evalute the following integrals int (sqrt(3x -2)) dx

int(1)/(sqrt(2+x-3x^2))dx

Evaluate: int4x^3sqrt(5-x^2)dx

Evaluate the following integrals int (x-3)/sqrt(3-2x-x^(2))dx

int(1)/(sqrt(1-(3x+2)^(2)))dx

Evaluate: int1/(sqrt(3-2x-x^2))\ dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(dx)/sqrt(2-3x-x^(2))=