Home
Class 12
MATHS
Solve log(2)(2sqrt(17-2x))=1 - log(1//2)...

Solve `log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1)`.

Text Solution

Verified by Experts

The correct Answer is:
x = 4

`log_(2)(2sqrt17-2x)=1+log_(2)(x-1)`
` or log_(2)((2sqrt(17-2x))/(x-1))=1`
` or ((2sqrt(17-2x))/(x-1))=2`
`or 2sqrt(17-2x)=2(x-1)`
` or x^(2)2x+1 = 17 - 2x`
` x^(2) = 16`
` rArr x = 4 ("as "x ne -4)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

Solve log_(4)(2xx4^(x-2)-1)+4= 2x .

Solve log_x(x^2-1)<=0

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve log_(2).(x-4)/(2x+5) lt 1 .

Solve log_2|x-1|<1

Solve log_(10)(x^(2)-2x-2) le 0 .

Solve: 1/4x^(log_2sqrt(x))=(2. x^((log)_2x))^(1/4)