Home
Class 12
MATHS
If f(x) is integrable over [1,2] then in...

If `f(x)` is integrable over `[1,2]` then `int_(1)^(2)f(x)dx` is equal to

A

`1`

B

`3`

C

`0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

As `f(x)` satisfies the conditions of Rolle's theorem in `[1,2]`
`f(x)` is continuous in the interval and `f(1)=f(2)`.
Therefore `int_(1)^(2) f'(x)dx=[f(x)]_(1)^(2)=f(2)-f(1)=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)x^(2)dx is equal to

If f(x) is integrable over [1,], then int_1^2f(x)dx is equal to ("lim")_(nvecoo)1/nsum_(r=1)^nf(r/n) ("lim")_(nvecoo)1/nsum_(r=n+1)^(2n)f(r/n) ("lim")_(nvecoo)1/nsum_(r=1)^nf((r+n)/n) ("lim")_(nvecoo)1/nsum_(r=1)^(2n)f(r/n)

int_(1)^(2)(dx)/(x^(2)) is equal to

STATEMENT 1: f(x) is symmetrical about x=2 . Then int_(2-a)^(2+a)f(x)dx is equal to 2int_2^(2+a)f(x)dxdot STATEMENT 2: If f(x) is symmetrical about x=b , then f(b-alpha)=f(b+alpha)AAalpha in Rdot

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If f(x)dx=g(x) and f^(-1)(x) is differentiable, then intf^(-1)(x)dx equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

Let f be a differentiable function from R to R such that abs(f(x)-f(y))abs(le2)abs(x-y)^(3//2) ,for all x,y inR .If f(0)=1 ,then int_(0)^(1)f^2(x)dx is equal to

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equalto" (a)4 (b)...

    Text Solution

    |

  2. int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to (a) pi/6 (b) (2pi...

    Text Solution

    |

  3. If f(x) is integrable over [1,2] then int(1)^(2)f(x)dx is equal to

    Text Solution

    |

  4. int(e^x)/(e^(2x)+4)dx

    Text Solution

    |

  5. The value of the integral int0^1(dx)/(x^2+2xcosalpha+1) is equal to si...

    Text Solution

    |

  6. int0^oo(dx)/([x+sqrt(x^2+1)]^3)i se q u a lto 3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  7. Iff(y)=e^y ,g(y)=y;y>0,a n dF(t)=int0^t f(t-y)g(y) dy,t h e n a) F(t...

    Text Solution

    |

  8. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  9. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  10. Suppose that F(x) is an anti-derivative of f(x)=(sinx)/x ,w h e r ex >...

    Text Solution

    |

  11. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to...

    Text Solution

    |

  12. Evaluate the definite integrals int(0)^((pi)/(4))(sinx+cosx)/(9+16s...

    Text Solution

    |

  13. int(1)^(2)x^(2)dx is equal to

    Text Solution

    |

  14. int(0)^((pi)/(2)) sin^7 xdx is :

    Text Solution

    |

  15. The range of the function f(x)=int(-1)^1(sinxdt)/((1-2tcosx+t^2)i s [...

    Text Solution

    |

  16. If the function f:[0,8]vecR is differentiable, then for 0<a , b<2,int0...

    Text Solution

    |

  17. If f(x)=xtan^(-1)x, then f'(1) is

    Text Solution

    |

  18. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  19. If f(x)="cos"(tan^(-1)x), then the value of the integral int0^1xf^(x)d...

    Text Solution

    |

  20. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |