Home
Class 12
MATHS
The numbers of possible continuous f(x) ...

The numbers of possible continuous `f(x)` defined in `[0,1]` for which `I_1=int_0^1f(x)dx=1,I_2=int_0^1xf(x)dx-a ,I_3=int_0^1x^2f(x)dx=a^2i s//a r e` 1 (b) `oo` (c) 2 (d) 0

A

`1`

B

`oo`

C

`2`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D

Since `a^(2)I_(1)-2aI_(2)+I_(3)=0`
`int_(0)^(1)(a-x)^(2)f(x)dx=0`
Hence, there is no such positive function `f(x)`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1 e^(2-3x) dx

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let T >0 be a fixed real number. Suppose f is continuous function such that for all x in R ,f(x+T)=f(x)dot If I=int_0^Tf(x)dx , then the value of int_3^(3+3T)f(2x)dx is (a) 3/2I (b) 2I (c) 3I (d) 6I

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

For x in R and a continuous function f, let I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2= int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2) is -1 (b) 1 (c) 2 (d) 3

If int_0^1e^-(x^2)dx=a , then find the value of int_0^1x^2e^-(x^2)dx in terms of a .

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. Iff(y)=e^y ,g(y)=y;y>0,a n dF(t)=int0^t f(t-y)g(y) dy,t h e n a) F(t...

    Text Solution

    |

  2. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  3. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  4. Suppose that F(x) is an anti-derivative of f(x)=(sinx)/x ,w h e r ex >...

    Text Solution

    |

  5. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to...

    Text Solution

    |

  6. Evaluate the definite integrals int(0)^((pi)/(4))(sinx+cosx)/(9+16s...

    Text Solution

    |

  7. int(1)^(2)x^(2)dx is equal to

    Text Solution

    |

  8. int(0)^((pi)/(2)) sin^7 xdx is :

    Text Solution

    |

  9. The range of the function f(x)=int(-1)^1(sinxdt)/((1-2tcosx+t^2)i s [...

    Text Solution

    |

  10. If the function f:[0,8]vecR is differentiable, then for 0<a , b<2,int0...

    Text Solution

    |

  11. If f(x)=xtan^(-1)x, then f'(1) is

    Text Solution

    |

  12. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  13. If f(x)="cos"(tan^(-1)x), then the value of the integral int0^1xf^(x)d...

    Text Solution

    |

  14. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  15. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^...

    Text Solution

    |

  16. Iff(pi)=2int0^pi(f(x)+f^(x))sinxdx=5,t h e nf(0) is equal to (it is g...

    Text Solution

    |

  17. If int1^2e^x^2dx=a ,t h e ninte^(e^4)sqrt(1n x)dxi se q u a lto 2e^4-...

    Text Solution

    |

  18. If f(x) is continuous for all real values of x , then sum(r=1)^nf(r-1...

    Text Solution

    |

  19. T h ev a l u eofint0^(pi/2)sin|2x-alpha|dx ,w h e r ealpha in [0,pi],i...

    Text Solution

    |

  20. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |