Home
Class 12
MATHS
The value of int(1/e)^(tanx)(tdt)/(1+t^2...

The value of `int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)),` where `x in (pi/6,pi/3)` , is equal to: 0 (b) 2 (c) 1 (d) none of these

A

0

B

2

C

1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=int_(1/e)^(tanx)(tdt)/((1+t^(2)))+int_(1/e)^(cotx)(dt)/(t(1+t^(2)))`
`:.f'(x)=(tanx)/(1+tan^(2)x)"sec"^(2)x+1/(cotx(1+cot^(2)x))(-cosec^(2)x)`
`=tanx-tanx=0`
Thus, `f(x)` is a constant function.
`f((pi)/4)=int_(1/e)^(1)(tdt)/((1+t^(2)))+int_(1/e)^(1)(dt)(t(1+t^(2)))`
`=int_(1/e)^(1)1/t dt=int_(1//e)^(1)=1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If y=tan^(-1)((2^x)/(1+2^(2x+1))),t h e n(dy)/(dx)a tx=0 is (a)1 (b) 2 (c) 1n 2 (d) none of these

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  2. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  3. The value of int(1/e)^(tanx)(tdt)/(1+t^2)+int(1/e)^(cotx)(dt)/(t(1+t^2...

    Text Solution

    |

  4. underset(xtooo)lim(x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  5. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  6. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  7. Ifint0^1e^x^2(x-alpha)dx=0,t h e n a<alpha<2 (b) alpha<0 0<alpha<1 ...

    Text Solution

    |

  8. The function x^x decreases in the interval (0,e) (b) (0,1) (0,1/e) ...

    Text Solution

    |

  9. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  10. ("lim")(xvecoo)(x(log"x")^3)/(1+x+x^2)e q u a l 0 (b) -1 (c) 1 ...

    Text Solution

    |

  11. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  12. IfA=int0^pi(cosx)/((x+2)^2)dx ,t h e nint0^(pi/2)(sin2x)/(x+1)dxi se q...

    Text Solution

    |

  13. int0^4((y^2-4y+5)sin(y-2)dy)/([2y^2-9y+11])i se q u a lto 0 (b) 2 ...

    Text Solution

    |

  14. IF tan ( pi cos theta) = cot ( pi sin theta ) then cos ( theta ...

    Text Solution

    |

  15. L e tI1=thetaint0^1(e^xdx)/(1+x)a n dI2thetaint0^1(x^2dx)/(e^x^3(2-x^3...

    Text Solution

    |

  16. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  17. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  18. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  19. IfI(m , n)=int0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n...

    Text Solution

    |

  20. The value of the definite integral int0^(pi/2)(sin5x)/(sinx)dxi s 0 (...

    Text Solution

    |