Home
Class 12
MATHS
int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi...

`int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto` `-pi/21npi` (b) 0 `pi/21n2` (d) none of these

A

`-(pi)/2 In pi`

B

`0`

C

`(pi)/2 In 2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`int_(0)^(oo) ((pi)/(1+pi^(2)x^(2))-1/(1+x^(2)))log x dx`
`=int_(0)^(oo) ("log"(y/(pi))dy)/(1+y^(2))-int_(0)^(oo) (logx)/(1+x^(2))dx`
`=-int_(0)^(oo) (log pi)/(1+y^(2))dy=-(pi)/2 In pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdx is equal to (a) -pi/2lnpi (b) 0 (c) pi/2ln2 (d) none of these

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_0^oo(dx)/([x+sqrt(x^2+1)]^3)i se q u a lto 3/8 (b) 1/8 (c) -3/8 (d) none of these

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these

The value of integral int_0^(1/sqrt3) (dx)/((1+x^2)sqrt(1-x^2)) must be (a) 3+2pi (b) 4-pi (c) 2+pi (d) none of these

(lim)_(nvecoo)1/x[int_y^a e^(sin^2t))dt-int_(x+y)^a e^(sin^2t))dt-]i se q u a lto (0,1] (b) [1,oo) (0,oo) (d) none of these

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to 0 (b) 2pi (c) pi (d) none of these

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

tan(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x),x!=0, is equal to x (b) 2x (c) 2/x (d) none of these

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to (a) pi (b) 2pi (c) pi/2 (d) none of these

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. underset(xtooo)lim(x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. Ifint0^1e^x^2(x-alpha)dx=0,t h e n a<alpha<2 (b) alpha<0 0<alpha<1 ...

    Text Solution

    |

  5. The function x^x decreases in the interval (0,e) (b) (0,1) (0,1/e) ...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  7. ("lim")(xvecoo)(x(log"x")^3)/(1+x+x^2)e q u a l 0 (b) -1 (c) 1 ...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  9. IfA=int0^pi(cosx)/((x+2)^2)dx ,t h e nint0^(pi/2)(sin2x)/(x+1)dxi se q...

    Text Solution

    |

  10. int0^4((y^2-4y+5)sin(y-2)dy)/([2y^2-9y+11])i se q u a lto 0 (b) 2 ...

    Text Solution

    |

  11. IF tan ( pi cos theta) = cot ( pi sin theta ) then cos ( theta ...

    Text Solution

    |

  12. L e tI1=thetaint0^1(e^xdx)/(1+x)a n dI2thetaint0^1(x^2dx)/(e^x^3(2-x^3...

    Text Solution

    |

  13. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  16. IfI(m , n)=int0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n...

    Text Solution

    |

  17. The value of the definite integral int0^(pi/2)(sin5x)/(sinx)dxi s 0 (...

    Text Solution

    |

  18. IfIn=int0^pie^x(sin"x")^("n")dx ,t h e n(I3)/(I1)i se q u a lto 3/5 ...

    Text Solution

    |

  19. If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0)=1, then the value of f(log(e...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |