Home
Class 12
MATHS
If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1...

If `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)]` and `P=S ("adj.A") S^(T)`, then find matrix `S^(T) P^(10) S`.

Text Solution

Verified by Experts

`S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2 sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))]`
`=[("sin "15^(@),cos 15^(@)),(-"cos "15^(@),sin 15^(@))]`
`:. SS^(T)=S^(T)S=I`
Now,
`S^(T) P^(10) S=S^(T)(S ("adj. A")S^(T))^(10)S`
`=S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(9)S`
`=I ("adj. A")S^(T) (S("adj. A")S^(T))^(9)S`
`=("adj. A")S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(8) S`
`=("adj. A")^(2)S^(T) (S("adj. A")S^(T))^(8)S`
...
...
`=("adj. A")^(10)`
`A=[(1,0),(-1,1)]`
`:.` adj. `A=[(1,0),(1,1)]`
`:. ("adj. A")^(2)=[(1,0),(1,1)][(1,0),(1,1)]=[(1,0),(2,1)]`
`:. ("adj. A")^(3)=[(1,0),(3,1)]`
And so on.
`:. ("adj. A")^(10)=[(1,0),(10,1)]=S^(T) P^(10) S`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

int_(1/sqrt(3))^(sqrt(3))(dx)/(1+x^(2))

Simplify (1)/(3 - sqrt(8)) - (1)/(sqrt(8) - sqrt(7)) + (1)/(sqrt(7) - sqrt(6)) - (1)/(sqrt(6) - sqrt(5)) + (1)/(sqrt(5) - 2)

Simplify (1)/(sqrt3+sqrt2)+(1)/(sqrt3-sqrt2)

Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10 Then find the value of n.

The sequence (1)/(sqrt(3)), (1)/(sqrt(3)+sqrt(2)), (1)/(sqrt(3) + 2 sqrt(2)) form an ........ .

Evaluate: (sqrt2+1)/(sqrt2-1)

CENGAGE-MATRICES-Examples
  1. Let A be an orthogonal matrix, and B is a matrix such that AB=BA, then...

    Text Solution

    |

  2. Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)].

    Text Solution

    |

  3. If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(...

    Text Solution

    |

  4. If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], t...

    Text Solution

    |

  5. Let A be a square matrix of order 3 such that adj. (adj. (adj. A)) =...

    Text Solution

    |

  6. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  7. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |

  8. Given the matrices a and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)]....

    Text Solution

    |

  9. If M is the matrix [(1,-3),(-1,1)] then find matrix sum(r=0)^(oo) ((-1...

    Text Solution

    |

  10. Let p be a non singular matrix, and I + P + p^2 + ... + p^n = 0, then ...

    Text Solution

    |

  11. If A and B are square matrices of same order such that AB=O and B ne O...

    Text Solution

    |

  12. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  13. If the matrices, A, B and (A+B) are non-singular, then prove that [A(A...

    Text Solution

    |

  14. If matrix a satisfies the equation A^(2)=A^(-1), then prove that A^(2^...

    Text Solution

    |

  15. If a and B are non-singular symmetric matrices such that AB=BA, then p...

    Text Solution

    |

  16. If A is a matrix of order n such that A^(T)A=I and X is any matric suc...

    Text Solution

    |

  17. Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] ...

    Text Solution

    |

  18. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  19. Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  20. Using matrix method, solve the following system of equations: x+2y+z...

    Text Solution

    |