Home
Class 12
MATHS
Let A be a square matrix of order 3 such...

Let `A` be a square matrix of order 3 such that
adj. (adj. (adj. A)) `=[(16,0,-24),(0,4,0),(0,12,4)]`. Then find
(i) `|A|` (ii) adj. A

Text Solution

Verified by Experts

We know that adj. (adj. A) `=|A|^(n-2)A`, where n is order of matrix.
`:.` adj. (adj. (adj. A))`=|"adj. A"|^(n-2)` adj. A
`=(|A|^(n-1))^((n-2))` adj. A
For `n=3`,
adj. (adj. (adj. A))`=|A|^(2)` adj. `A=[(16,0,-24),(0,4,0),(0,12,4)]`
`:. |A|^(6)|"adj. A"|=256`
`implies |A|^(6)|A|^(2)=2^(8)`
`implies |A|=2`
`implies` adj. `A=1/4 [(16,0,-24),(0,4,0),(0,12,4)]=[(4,0,-6),(0,1,0),(0,3,1)]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix of order 3 such that |A|=5 , then |Adj(4A)|=

Find adj (adj (A)) if adj A= [(1,0,1),(0,2,0),(-1,0,1)] .

Knowledge Check

  • If A is a square matrix of order n, then |adj A|=

    A
    `|A|^(n-1)`
    B
    `|A|^(n-2)`
    C
    `|A|^(n)`
    D
    none
  • If A is a square matrix of order 4 then |adj A| is :

    A
    `|A|`
    B
    `|A|^(4)`
    C
    `|A|^(9)`
    D
    `|A|^(16)`
  • Let A be a nonsingular square matrix of order 3xx3 .Then |adj A| is equal to

    A
    |A|
    B
    `|A|^(2) `
    C
    `|A|^(3) `
    D
    `3|A|`
  • Similar Questions

    Explore conceptually related problems

    If A is order 3 square matrix such that |A|=2 , then |"adj (adj (adj A))"| is

    Find adj (adj(A)) if adj A = [{:(1,0,1),(0,2,0),(-1,0,1):}] .

    Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is

    If adj (A) = [(0,-2,0),(6,2,-6),(-3,0,6)] find A^(-1) .

    If A = [(3,-3,4),(2,-3,4),(0,-1,1)] then adj ( adj A) is