Home
Class 12
MATHS
If the matrices, A, B and (A+B) are non-...

If the matrices, A, B and `(A+B)` are non-singular, then prove that `[A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1)`.

Text Solution

Verified by Experts

`[A(A+B)^(-1) B]^(-1) =B^(-1) ((A+B)^(-1))^(-1) A^(-1)`
`=B^(-1) (A+B)A^(-1)`
`=(B^(-1) A+B^(-1)B) A^(-1)`
`=(B^(-1)A+I)A^(-1)`
`=B^(-1) A A^(-1)+IA^(-1)`
`=B^(-1)I+A^(-1)`
`=B^(-1)+A^(-1)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

If a and B are non-singular symmetric matrices such that AB=BA , then prove that A^(-1) B^(-1) is symmetric matrix.

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

If A and B are square matrices such that AB = BA then prove that A^(3)-B^(3)=(A-B) (A^(2)+AB+B^(2)) .

Let A and B be two non-singular square matrices such that B ne I and AB^(2)=BA . If A^(3)-B^(-1)A^(3)B^(n) , then value of n is

If A is a 3xx3 non -singular matrix such that "AA"^(T)=A^(T)A "and" B=A^(-1)A^(T), "then" BB^(T) =

If Aa n dB are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A= I b. 2I c. O d. -I

If A and B are square matrices of order 3 such that det. (A) = -2 and det.(B)= 1 , then det.(A^(-1)adjB^(-1).adj(2A^(-1)) is equal to

CENGAGE-MATRICES-Examples
  1. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |

  2. Given the matrices a and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)]....

    Text Solution

    |

  3. If M is the matrix [(1,-3),(-1,1)] then find matrix sum(r=0)^(oo) ((-1...

    Text Solution

    |

  4. Let p be a non singular matrix, and I + P + p^2 + ... + p^n = 0, then ...

    Text Solution

    |

  5. If A and B are square matrices of same order such that AB=O and B ne O...

    Text Solution

    |

  6. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  7. If the matrices, A, B and (A+B) are non-singular, then prove that [A(A...

    Text Solution

    |

  8. If matrix a satisfies the equation A^(2)=A^(-1), then prove that A^(2^...

    Text Solution

    |

  9. If a and B are non-singular symmetric matrices such that AB=BA, then p...

    Text Solution

    |

  10. If A is a matrix of order n such that A^(T)A=I and X is any matric suc...

    Text Solution

    |

  11. Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] ...

    Text Solution

    |

  12. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  13. Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  14. Using matrix method, solve the following system of equations: x+2y+z...

    Text Solution

    |

  15. Using matrix method, show that following system of equation is inconsi...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. Find the characteristic roots of the two-rowed orthogonal matrix [(cos...

    Text Solution

    |

  18. Show that if lambda(1), lambda(2), ...., lamnda(n) are n eigenvalues o...

    Text Solution

    |

  19. If A is nonsingular, prove that the eigenvalues of A^(-1) are the reci...

    Text Solution

    |

  20. If one of the eigenvalues of a square matrix a order 3xx3 is zero, the...

    Text Solution

    |