Home
Class 12
MATHS
If matrix a satisfies the equation A^(2)...

If matrix a satisfies the equation `A^(2)=A^(-1)`, then prove that `A^(2^(n))=A^(2^((n-1))), n in N`.

Text Solution

Verified by Experts

`A^(2^(n))=A^(2.2^(n-1))=(A^(2))^(2^(n-1))`
`=(A^(-1))^(2^(n-1))=(A^(2^(n-1)))^(-1)=(A^(2.2^(n-1)))^(-1)`
`=((A^(2))^(2^(n-1)))^(-1)=((A^(-1))^(-1))^(2^((n-2)))=A^(2^((n-2)))`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.1|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.2|6 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

Prove that 2 le (1+ (1)/(n))^(n) lt 3 for all n in N .

If tantheta=ntanalpha and sintheta=msinalpha then prove that cos^(2)theta=(m^(2)-1)/(n^(2)-1),n!=+-1.

Prove that n! ( n +2) = n ! + ( n + 1) !

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

CENGAGE-MATRICES-Examples
  1. Matrices a and B satisfy AB=B^(-1), where B=[(2,-1),(2,0)]. Find (i...

    Text Solution

    |

  2. Given the matrices a and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)]....

    Text Solution

    |

  3. If M is the matrix [(1,-3),(-1,1)] then find matrix sum(r=0)^(oo) ((-1...

    Text Solution

    |

  4. Let p be a non singular matrix, and I + P + p^2 + ... + p^n = 0, then ...

    Text Solution

    |

  5. If A and B are square matrices of same order such that AB=O and B ne O...

    Text Solution

    |

  6. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  7. If the matrices, A, B and (A+B) are non-singular, then prove that [A(A...

    Text Solution

    |

  8. If matrix a satisfies the equation A^(2)=A^(-1), then prove that A^(2^...

    Text Solution

    |

  9. If a and B are non-singular symmetric matrices such that AB=BA, then p...

    Text Solution

    |

  10. If A is a matrix of order n such that A^(T)A=I and X is any matric suc...

    Text Solution

    |

  11. Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] ...

    Text Solution

    |

  12. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  13. Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  14. Using matrix method, solve the following system of equations: x+2y+z...

    Text Solution

    |

  15. Using matrix method, show that following system of equation is inconsi...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. Find the characteristic roots of the two-rowed orthogonal matrix [(cos...

    Text Solution

    |

  18. Show that if lambda(1), lambda(2), ...., lamnda(n) are n eigenvalues o...

    Text Solution

    |

  19. If A is nonsingular, prove that the eigenvalues of A^(-1) are the reci...

    Text Solution

    |

  20. If one of the eigenvalues of a square matrix a order 3xx3 is zero, the...

    Text Solution

    |