Home
Class 12
MATHS
If x satisfies the condition f(x)={x:x^2...

If `x` satisfies the condition `f(x)={x:x^2+3 0le11x}` then maximum value of function `f(x)=3x^3-18x^2-27x-40` is equal to (A) `-122` (B) `122` (C) `222` (D) `-222`

A

122

B

-222

C

-122

D

222

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

f(x) = x^2 +1 ,0 le x le 2 find the range of the function f.

Find the absolute maximum and absolute minimum values of the function f(x)=2x^(3)+3x^(2)-12x on [-3, 2]

Discuss the extremum of f(x)=40/(3x^4+ 8x3-18 x^2+60)

Find the absolute maximum and absolute minimum values of the function f(x) = 2x^(3) - 3x^(2) + 2 "in " -(1)/(2) le x le 4

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is (A) 18^@ (B) 36^@ (C) 22.5^@ (D) 15^@

If f: Rvec is a function such that f(x)=x^3+x^2+3x+sinx , then identify the type of function.

Find the values in the interval (1,2) of the mean value theorem satisfied by the function f(x)=x-x^(2) "for" 1 le x le 2 .

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to