Home
Class 12
MATHS
Let f(x) = - (x)/(sqrt(a^(2) + x^(2)))- ...

Let `f(x) = - (x)/(sqrt(a^(2) + x^(2)))- (d-x)/(sqrt(b^(2) + (d-x)^(2))), x in R`, where a, b and d are non-zero real constants. Then,

A

f is a decreasing function of x

B

f is neither increasing nor decreasing function of x

C

f' is not a continuous function of x

D

f is an increasing function of x

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) then

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If b^2<2a c , then prove that a x^3+b x^2+c x+d=0 has exactly one real root.

If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

The maximum value of the expression |sqrt(sin^2x+2a^2)-sqrt(2a^2-1-cos^2x)| , where aa n dx are real numbers, is sqrt(3) (b) sqrt(2) (c) 1 (d) sqrt(5)

(lim)_(xvec0)((sqrt(1+x sin x)-sqrt(cos2x))/(tan^2(x//2))) is equal to 1/6 b. 6 c. 3 d. 2

Number of points where function f(x) defined as f:[0,2]pivecR ,f(x)={3-|cos x-1/(sqrt(2))|,|sinx<1/(sqrt(2))|2+|cos x+1/(sqrt(2))|,|s in x|geq1/(sqrt(2)) is non-differentiable is a. 2 b. 4 c. 6 d. 0