Home
Class 12
MATHS
"Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^...

`"Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^(3)+3x+6)) " and " k(-1)=(1)/(root(3)(2)). " Then the value of " k(-2) " is "-.`

Text Solution

Verified by Experts

The correct Answer is:
2

`k(x)=int((x^(2)+1)dx)/((x^(3)+3x+6)^(1//3))`
`"Put " x^(3)+3x+6=t^(3)`
`"or " 3(x^(2)+1)dx=3t^(2)dt`
`k(x)=int(t^(2)dt)/(t)=(t^(2))/(2)+C=(1)/(2)(x^(3)+3x+6)^(2//3)+C`
`k(-1)=(1)/(2)(2)^(2//3)+C " or " C=0`
` :. k(x)=(1)/(2)(x^(3)+3x+6)^(2//3),f(-2)=(1)/(2)(-8)^(2//3)`
`=(1)/(2)[(-2)^(3)]^(2//3)=2`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Let k(x) = ((x^(2)+1))/(root(3)(x^(3)+3x+6) dx and k(-1) = 1/root (3)(2)) then the value of k(-2) is

Let k(x)=int((x^2+1)dx)/((x^3+3x+6)^(1/3))a n dk(-1)=1/(2^(1/3)) . Then the value of k(-2) is____

If -i+3 is a root of x^(2)-6x+k=0 . Then the value of k is :

if int (3^((1)/(x)))/(x^(2)) dx = k (3^((1)/(x))) + c , then the value of k is

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

If int (3^(1/x))/(x^2) dx = k (3^(1/x)) + c , then the value of k is …………. .

int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

Solve : root(4)(|x-3|^(x+1))=root(3)(|x-3|^(x-2)) .

Find (dy)/(dx) if y = root(3)(3x^(2)-6x+1) .