Home
Class 12
MATHS
If [x] denotes the greatest integer less...

If `[x]` denotes the greatest integer less than or equal to x, then evaluate `lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).`

Text Solution

Verified by Experts

The correct Answer is:
`x//2`

`underset(ntooo)lim(1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x])`
`=underset(ntooo)lim{(sum_(r=1)^(n)[rx])/(n^(2))}`
`=underset(ntooo)lim{(sum_(r=1)^(n)(rx-{rx}))/(n^(2))}`
`=underset(ntooo)lim((x.(n(n+1))/(2))/(n^(2))-sum_(r=1)^(n)({rx})/(n^(2)))`
`=underset(ntooo)lim((x.(1+(1)/(n)))/(2)-sum_(r=1)^(n)({rx})/(n^(2)))`
`=x/2-0=x/2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

[x] denotes the greatest integer, less than or equal to x, then the value of the integral int_(0)^(2)x^(2)[x]dx equals

if [x] denotes the greatest integer less than or equal to x then integral int_0^2x^2[x] dx equals

let [x] denote the greatest integer less than or equal to x. Then lim_(xto0) (tan(pisin^2x)+(abs(x)-sin(x[x]))^2)/x^2

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to-

If [x] denotes the greatest integer less than or equal to x, the extreme values of the function f(x)=[1+sinx]+[1+sin2x]+[1+sin3x]+…+[1+sin nx], n in 1^+, x in(0,pi) are

If f(x)={:(sin[x]","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

Let [x] denotes the greatest integer less then or equal to x. If x=(sqrt3+1)^5 , then [x] is equal to

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

Let [x] denote the greatest integer less than or equal to x for any real number x. Then lim_(n to oo) ([n sqrt(2)])/(n) is equal to