Home
Class 12
MATHS
Evaluate the limit: lim(x->1)(sum (k=1) ...

Evaluate the limit: `lim_(x->1)(sum _(k=1) ^100 x^k-100)/(x-1)`

Text Solution

Verified by Experts

The correct Answer is:
5050

`underset(x to 1)("lim")([sum_(k=1)^(100)x^(k)] - 100)/((x-1))`
`=underset(xto1)lim((x+x^(2)+x^(3)+...+x^(100))-100)/((x-1))`
`=underset(xto1)lim((x-1)+(x^(2)-1)+(x^(3)-1)+...+(x^(100)-1))/((x-1))`
`=underset(xto1)lim{((x-1)/(x-1))+((x^(2)-1)/(x-1))+((x^(3)-1)/(x-1))+....+((x^(100)-1)/(x-1))}`
`=underset(xto1)lim{((x-1)/(x-1))+underset(xto1)lim((x^(2)-1)/(x-1))+underset(xto1)lim((x^(3)-1)/(x-1))+...`
`underset(xto1)lim((x^(100)-1)/(x-1))=1+2+3+...+100`
`=(100xx101)/(2)=5050`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE PUBLICATION|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limit: lim_(x->oo)((x+2)/(x+1))^(x+3)

Evaluate the limit: lim_(x->1)("sin"(logx))/(logx)

Evaluate the limit: lim_(x->1)((2x-3)(sqrt(x)-1))/(2x^2)

Evaluate the following limits: lim _(x->1)((sqrt(2-x)-1)/(1-x))

Evaluate the following limits: lim_(xto0)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Evaluate the limit: lim_(x->0)(sqrt(2)-sqrt(1+cosx))/(sin^2x)

Evaluate the limit: lim_(x->a)(sqrt(3x-a)-sqrt(x+a))/(x-a)

Evaluate the following limits in lim_(xrarr0)((x+1)^(5)-1)/(x)

Evaluate the following limits : lim_(xrarr0)(5^x-4^x)/(3^x-1)

Evaluate the following limits in lim_(xrarr0)(cos2x-1)/(cosx-1)