Home
Class 12
MATHS
Let f(x) be a continuous function AAx in...

Let `f(x)` be a continuous function `AAx in R ,` except at `x=0,` such that `int_0^a f(x)dx`, `ain R^+` exists. If `g(x)=int_x^a(f(t))/t dt `, prove that `int_0^af(x)dx=int_0^ag(x)dx`

Text Solution

Verified by Experts

We have `g(x)=int_(x)^(a)(f(t))/t dt` ………………..1
Differentiating both sides w.r.t `x`, we get
`g'(x)=-(f(x))/x` or `f(x)=-xg'(x)`
or `int_(0)^(a)f(x)dx=-int_(0)^(a)dg(x)dx`
`=-x g(x)|_(0)^(a)+int_(0)^(a)g(x)dx`
`=-ag(a)+int_(0)^(a)g(x)dx`
`=int_(0)^(a)g(x)dx` [as form 1 `g(a)=0`]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x(sint)/t dt ,x >0, then

Evaluate:If f(a-x)=f(x), then show that int_0^axf(x)dx=a/2int_0^af(x)dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Let f(x) be a continuous periodic function with period T. Let I= int_(a)^(a+T) f(x)dx . Then

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .

int_(0)^(2a)f(x)dx is equal to -

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in[0,a] then int_0^a dx/(1+e^f(x) is equal to

Let f be a continuous function on [a ,b]dot Prove that there exists a number x in [a , b] such that int_a^xf(t)dt=int_x^bf(t)dtdot

CENGAGE PUBLICATION-DEFINITE INTEGRATION -SOLVED EXAMPLE_TYPE
  1. f,g,h are continuous in [0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  2. Evaluate int(0)^((pi)/2)(sin3x)/(sinx+cosx) dx.

    Text Solution

    |

  3. Let f:[0,4]rarrR be a differentiable function then for some alpha, bet...

    Text Solution

    |

  4. Prove that int(0)^(oo) (sin^(2)x)/(x^(2))dx=int(0)^(oo) (sinx)/x dx

    Text Solution

    |

  5. If int0^(pi/2)logsinthetadtheta=k , then find the value of intpi^(pi/2...

    Text Solution

    |

  6. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  7. Find the value of int(-pi/3)^(pi/3)(pi+4x^3)/(2-cos(|x|pi/3))dx

    Text Solution

    |

  8. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  9. Evaluate: int0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2theta...

    Text Solution

    |

  10. If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int0^(pi/2)f(x)f(pi/2-x)...

    Text Solution

    |

  11. Let f(x) be a continuous function AAx in R , except at x=0, such that...

    Text Solution

    |

  12. If xint0^xsin(f(t))dt=(x+2)int0^x tsin(f(t))dt ,w h e r ex >0, then sh...

    Text Solution

    |

  13. Show that: int0^(pi//2)f(sin2x)sinxdx=sqrt(2)int0^(pi//4)f(cos2x)co...

    Text Solution

    |

  14. Let a+b=4,w h e r ea<2,a n dl e tg(x) be a differentiable function. If...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int0^2f(2-...

    Text Solution

    |

  17. Suppose f is a real-valued differentiable function defined on [1,oo] w...

    Text Solution

    |

  18. Let f be a contiuous function on [a,b]. If F(x)=(int(a)^(x)f(t)dt-int(...

    Text Solution

    |

  19. f(x) is a continuous and bijective function on Rdot If AAt in R , the...

    Text Solution

    |

  20. If f(x)=x+int0^1 t(x+t) f(t)dt, then find the value of the definite in...

    Text Solution

    |