Home
Class 12
MATHS
Which of the following is incorrect? in...

Which of the following is incorrect? `int_(a c)^(b+c)f(x)dx=int_a^bf(x+c)dx` `int_(a c)^(b c)f(x)dx=int_a^bf(c x)dx` `int_(-a)^af(x)dx=1/2int_(-a)^a(f(x)+f(-x)dx` None of these

A

(a) `int_(a+c)^(b+c)f(x)dx=int_(a)^(b)f(x+c)dx`

B

(b) `int_(ac)^(bc)f(x)dx=cint_(a)^(b)f(cx)dx`

C

(c) `int_(-a)^(a)f(x)dx=1/2int_(-a)^(a)f(x)+f(-x)dx`

D

(d) none of these

Text Solution

Verified by Experts

The correct Answer is:
D

`I_(1)=int_(a+b)^(b+c)f(x)dx`. Putting `x=t+c` and `dx=dt`, we get
`I_(1)=int_(a)^(b)f(t+c)dt=int_(a)^(b)f(x+c)dx`
Now `I_(2)=int_(ac)^(bc)f(x)dx`
Putting `x=tc` and `dx=cdt`, we get
`I_(2)=cint_(a)^(b)f(ct)dt=cint_(a)^(b)f(cx)dx`
`f(x)=1/2 (f(x)+f(-x)+f(x)-f(-x))`
`:. I_(3)=int_(-a)^(a)f(x)dx`
`=1/2 int_(-a)^(a)(f(x))+f(-x)+f(x)-f(-x)dx`
`=1/2int_(-a)^(a)(f(x)+f(-x))dx+1/2 int_(-a)^(a)(f(x)-f(-x))dx`
`=1/2 int_(-a)^(a)(f(x)+f(-x))dx`
as `f(x)+f(-x)` is even and `f(x)-f(-x)` is odd.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Which of the following is incorrect? int_(a+ c)^(b+c)f(x)dx=int_a^bf(x+c)dx int_(ac)^(b c)f(x)dx=cint_a^bf(c x)dx int_(-a)^af(x)dx=1/2int_(-a)^a(f(x)+f(-x)dx None of these

int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx if-

If int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx , then-

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .

Show : int_(a)^(b)f(kx)dx=(1)/(k)int_(ka)^(kb)f(x)dx

int_(a)^(b)f(x)dx is equal to-

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx , and when f(x) is odd function, int_(-a)^af(x)dx=0

int_(0)^(2a)f(x)dx is equal to -

CENGAGE PUBLICATION-DEFINITE INTEGRATION -SCQ_TYPE
  1. int(2-a)^(2+a)f(x)dx is equal to [where f(2-alpha)=f(2+alpha) AAalpha ...

    Text Solution

    |

  2. Let f(x)=min({x},{-x})AA epsilonR, where {.} denotes the fractional pa...

    Text Solution

    |

  3. Which of the following is incorrect? int(a c)^(b+c)f(x)dx=inta^bf(x+c...

    Text Solution

    |

  4. Evaluate int(0)^(1) (e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    Text Solution

    |

  5. Ifint(log2)^x(dy)/(sqrt(e^y-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  6. int(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to

    Text Solution

    |

  7. If f(x) satisfies the condition of Rolle's theorem in [1,2], then int1...

    Text Solution

    |

  8. The value of the integral int0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

    Text Solution

    |

  9. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  10. int0^oo(dx)/([x+sqrt(x^2+1)]^3)is equal to (a)3/8 (b) 1/8 (c) -3/8 ...

    Text Solution

    |

  11. If f(y)=e^y ,g(y) = y>0,a n d \ F(t)=int0^t f(t-y)g(y)dy ,then

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  14. Suppose that F(x) is an anti-derivative of f(x)=(sinx)/x ,w h e r ex >...

    Text Solution

    |

  15. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dxi se q u a lto...

    Text Solution

    |

  16. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  17. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  18. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  19. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1-2tcosx+t^(2)) is

    Text Solution

    |

  20. If the function f : [0,8] to R is differentiable, then for 0 < alpha...

    Text Solution

    |