Home
Class 12
MATHS
The numbers of possible continuous f(x) ...

The numbers of possible continuous `f(x)` defined in `[0,1]` for which `I_1=int_0^1f(x)dx=1,I_2=int_0^1xf(x)dx-a ,I_3=int_0^1x^2f(x)dx=a^2i s//a r e` 1 (b) `oo` (c) 2 (d) 0

A

`1`

B

`oo`

C

`2`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D

Since `a^(2)I_(1)-2aI_(2)+I_(3)=0`
`int_(0)^(1)(a-x)^(2)f(x)dx=0`
Hence, there is no such positive function `f(x)`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are

int_(0)^(1)2e^(x)dx

if int_0^1 f(x)dx=1,int_0^1 xf(x)dx=a and int_0^1 x^2f(x)dx=a^2 , then int_0^1(a-x)^2f(x)dx is equal to

If I_1=int_0^1 2^(x^2)dx , I_2=int_0^1 2^(x^3) dx , I_3= int_1^2 2^(x^2) dx , I_4=int_1^2 2^(x^3)dx then

If f(x)=int_a^x[f(x)]^(-1)dx and int_a^1[f(x)]^(-1)dx=sqrt(2) , then

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

if I=int_0^(1.7)[x^2]dx then I equals

For x in R and a continuous function f, let I_1=int_(sin^2t)^(1+cos^2t)xf{x(2-x)}dx and I_2=int_(sin^2t)^(1+cos^2t)f{x(2-x)}dx .Then (I_1)/(I_2) is (a) -1 (b) 1 (c) 2 (d) 3

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)

The natural number nle5 for which I_n=int_0^1 e^x(x-1)^n dx=16-6e is

CENGAGE PUBLICATION-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(y)=e^y ,g(y) = y>0,a n d \ F(t)=int0^t f(t-y)g(y)dy ,then

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The numbers of possible continuous f(x) defined in [0,1] for which I1...

    Text Solution

    |

  4. Suppose that F(x) is an anti-derivative of f(x)=(sinx)/x ,w h e r ex >...

    Text Solution

    |

  5. int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dxi se q u a lto...

    Text Solution

    |

  6. Evaluate the definite integrals int(0)^(pi//4)(sinx+cosx)/(25-16(...

    Text Solution

    |

  7. int- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

    Text Solution

    |

  8. If int0^oosinx/xdx=pi/2, then int0^oosin^3x/xdx is equal to

    Text Solution

    |

  9. The range of the function f(x)=int(-1)^(1)(sinxdt)/(1-2tcosx+t^(2)) is

    Text Solution

    |

  10. If the function f : [0,8] to R is differentiable, then for 0 < alpha...

    Text Solution

    |

  11. If f(x)=x^(5)+5x-1 then int(5)^(41)(dx)/((f^(-1)(x))^(5)+5f^(-1)(x)) e...

    Text Solution

    |

  12. Let f(0)=0a n dint0^2f^(prime)(2t)e^(f(2t))dt=5.t h e nv a l u eoff(4)...

    Text Solution

    |

  13. If f(x)="cos"(tan^(-1)x), then the value of the integral int0^1xf''(x)...

    Text Solution

    |

  14. The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)...

    Text Solution

    |

  15. The value of int1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b)...

    Text Solution

    |

  16. If f(pi) = 2 and int0^pi (f(x)+f^('')(x)) sinx dx=5, then f(0) is equa...

    Text Solution

    |

  17. If int1^2e^x^2dx=a ,t h e ninte^(e^4)sqrt(1n x)dxi se q u a lto 2e^4-...

    Text Solution

    |

  18. If f(x) is continuous for all real values of x , then sum(r=1)^nf(r-1...

    Text Solution

    |

  19. T h ev a l u eofint0^(pi/2)sin|2x-alpha|dx ,w h e r ealpha in [0,pi],i...

    Text Solution

    |

  20. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |