Home
Class 12
MATHS
I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx...

`I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n` `I_2=I_3=I_4=0,I_1!=0` `I_1=I_2=I_3=0,I_4!=0` `I_1=I_2=I_3=0,I_4!=0` `I_1=I_4=I_3=0,I_2!=0`

A

`I_(2)=I_(3)=I_(4)=0,I_(1)!=0`

B

`I_(1)=I_(2)=I_(3)=0,I_(4)!=0`

C

`I_(1)=I_(3)=I_(4)=0,I_(2)!=0`

D

`I_(1)=I_(2)=I_(3)=0,I_(4)!=0`

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(1)=int_(0)^(pi//2)(sinx_cosx)/(1+sinx cos) dx`
`=int_(0)^(pi//2) ("sin"((pi)/2-x)-"cos"((pi)/2-x))/(1+"sin"((pi)/2-x)"cos"((pi)/2-x))`
`=int_(0)^(pi//2)(cosx-sinx)/(1+sinx cosx)dx=-I_(1)`
or `I_(1)=0`
`I_(3)=0` as `sin^(3)x` is odd
`I_(4)=int_(0)^(1)In((1-x)/x)dx`
`=int_(0)^(1)In((1-(1-x))/(1-x))dx`
`=int_(0)^(1)In x/(1-x)dx=-I_(4)`
or `I_(4)=0`
`I_(2)=int_(0)^(2pi)cos^(6)x dx=2int_(0)^(pi)cos^(6)x dx!=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find I=int_0^pi ln(1+cosx)dx

If I_(1)int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then,

If I_1=int_0^1 2^(x^2)dx , I_2=int_0^1 2^(x^3) dx , I_3= int_1^2 2^(x^2) dx , I_4=int_1^2 2^(x^3)dx then

if I=int_0^(pi/2)( sin8xlog(cotx))/(cos2x)dx then I equals

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

I_1=int_0^(pi/2)ln(sinx)dx ,I_2=int_(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then (a) I_1=2I_2 (b) I_2=2I_1 I_1=4I_2 (d) I_2=4I_1

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

If I= int_0^(pi/2) dx/(sqrt(1+sin^3x) then

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

CENGAGE PUBLICATION-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the...

    Text Solution

    |

  2. The value of int0^(2pi)[2sinx]dx ,w h e r e[dot] represents the greate...

    Text Solution

    |

  3. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  4. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  5. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  6. Find the value of int(0)^(oo)(xdx)/((1+x)(1+x^(2))) equals to

    Text Solution

    |

  7. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  8. Let f be a positive function. Let I1=int(1-k)^k xf([x(1-x)]dx , I2=i...

    Text Solution

    |

  9. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  10. The value of int1^((1+sqrt(5))/2)(x^2+1)/(x^4-x^2+1)log(1+x-1/x)dx is...

    Text Solution

    |

  11. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is (a) s...

    Text Solution

    |

  12. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  13. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,then lambda is e...

    Text Solution

    |

  14. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  15. T h ev a l u eoft h ein t egr a lint(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(...

    Text Solution

    |

  16. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  17. If I1=int0^(pi//2)(cos^2x)/(1+cos^2x)dx , I2=int0^(pi//2)(sin^2x)/(1+s...

    Text Solution

    |

  18. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  19. For x in R and a continuous function f, let I1=int(sin^2t)^(1+cos^2t)...

    Text Solution

    |

  20. Ifint(-pi/4)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx))=kint(-p...

    Text Solution

    |