Home
Class 12
MATHS
The value of int(0)^(pi)(|x|sin^(2)x)/(1...

The value of `int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx` is equal to

A

a. `pi//4`

B

b. `pi//2`

C

c. `pi`

D

d. `2pi`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=int_(0)^(pi)(xsin^(2)x)/(1+2|cosx+sinx)dx` …………1
`=:.I=int_(0)^(pi)((pi-x)sin^(2)x)/(1+2|cosx|sinx) dx` …………….2
Adding 1 and 2 we get
`2I=pi int_(0)^(pi)(sin^(2)x)/(1+2|cos|sinx) dx`
`implies I=(pi)/2xx2int_(0)^((pi)/2)(sin^(2)x)/(1+2cosxsinx)dx`
`:.I=pi int_(0)^((pi)/2)(sin^(2)x)/(1+sin2x)dx`.............3
`:.I=piint_(0)^((pi)/2)(cos^(2)x)/(1+sin2x) dx`.................4
Adding 3 and 4 we get
`2I=pi int_(0)^((pi)/2)(dx)/((cosx+sinx)^(2))`
`=pi int_(0)^((pi)/2)(sec^(2)x)/((1+tanx)^(2))dx`
`=pi int_(0)^(oo) (dt)/(t^(2))dx` (putting `1+tanx=t`)
`=-pi(1/t)_(1)^(oo) =-pi (0-1)=pi`
Hence `I=pi//2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If a gt 0 , then the value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx is equal to -

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

The value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx is equal to -

The value of int_(0)^(pi) e^(sin^(2)x) cos^(3)x dx is equal to -

The value of int_(0)^(pi) (x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx is equal to -

The value of the integral int_(0)^(2pi)(sin x+|sin x|)dx is equal to -

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of int_(0)^(1)sin[2tan^(-1)sqrt((1+x)/(1-x))]dx is equal to -

Evaluate: int_(0)^((pi)/(2))(sin^(2)x)/(sinx+cosx)dx

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

CENGAGE PUBLICATION-DEFINITE INTEGRATION -SCQ_TYPE
  1. about to only mathematics

    Text Solution

    |

  2. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  3. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  4. The value of the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n i...

    Text Solution

    |

  5. If f(x)a n dg(x) are continuous functions, then int(1nlambda)^(1n1/lam...

    Text Solution

    |

  6. int0^1 tan^(-1) ((2x-1)/(1+x-x^2)) dx is equal to

    Text Solution

    |

  7. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dxi se q u a lto e+1 ...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin rx...

    Text Solution

    |

  10. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  11. int1^4 {x-0.4}dx equals (where {x} is a fractional part of x

    Text Solution

    |

  12. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  13. Evaluate: int0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest int...

    Text Solution

    |

  14. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  15. Let f be an odd continous function which is periodic with priod 2 if g...

    Text Solution

    |

  16. If g(x)=int0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where...

    Text Solution

    |

  17. Ifx=intc^(sint)sin^(-1)z dz ,y=intk^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)...

    Text Solution

    |

  18. Let f(x)=int2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Th...

    Text Solution

    |

  19. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  20. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |