Home
Class 12
MATHS
If L=lim(nto oo) (n^(3)(e^(1//n)+e^(2//n...

If `L=lim_(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(m)+….+n^(2m)))` is non zero finite real, then

A

`L=3(e-1)`

B

`L=2(e-1)`

C

`m=1`

D

`m=1//3`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`L=lim_(n to oo) (n^(3)sum_(r=1)^(n)e^(r//n))/((n+1)^(m)sum_(r=1)^(n)r^(2m))`
`=lim_(n to oo) (n^(3)sum_(r=1)^(n)e^(r//n) . 1/n)/((n+1)^(m)n^(2m)sum_(r=1)^(n)(r/n)^(2m) . 1/n)`
`=lim_(n to oo) (n^(3))/((n+1)^(m)n^(2m)) . (lim_(nto oo) 1/n sum_(r=1)^(n)e^(r//n))/(lim_(nto oo) 1/n sum_(r=1)^(n)(r/n)^(2m))`
`=lim_(nto oo) (n^(3))/((n^(3)+n^(2))m) . (int_(0)^(1)e^(x)dx)/(int_(0)^(1)x^(2m)dx)`
For `L` to be non-zero finite `m=1`
`:. L=(int_(0)^(1)e^(x)dx)/(int_(0)^(1)x^(2)dx)=(e-1)/(1//3) =3(e-1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

Evaluate: lim_(n->oo)(4^n+5^n)^(1/n)

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Prove that, lim_(ntooo)e^((2)/(n)+1)=e

lim_(n->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

CENGAGE PUBLICATION-DEFINITE INTEGRATION -MCQ_TYPE
  1. If f(x) is integrable over [1,2], then int1^2f(x)dx is equal to (a) ...

    Text Solution

    |

  2. If L=lim(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(...

    Text Solution

    |

  3. Let p=1+1/(sqrt(2))+1/(sqrt(3))+...+1/(sqrt(120)) and q=1/(sqrt(2))+1/...

    Text Solution

    |

  4. Let Sn=sum(k=0)^n n/(n^2+kn+k^2) and Tn=sum(k=0)^(n-1) n/(n^2+kn+k^2) ...

    Text Solution

    |

  5. The value of int0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dx is

    Text Solution

    |

  6. Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, where xgt0, Then

    Text Solution

    |

  7. If int(a)^(b)|sinx|dx=8 and int(0)^(a+b)|cosx|dx=9, then find the valu...

    Text Solution

    |

  8. Iff(x)=int0^x2|t|dt ,t h e n g(x)=x|x| g(x) is monotonic g(x) is di...

    Text Solution

    |

  9. If An=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,Bn=int0^(pi/2)((sinn x)/(sinx)...

    Text Solution

    |

  10. The value of int0^oo (dx)/(1+x^4) is

    Text Solution

    |

  11. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  12. Ifinta^b(f(x))/(f(x)+f(a+b-x))dx=10 ,t h e n (a) b=22 ,a=2 (b) b=15 ...

    Text Solution

    |

  13. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  14. If f(x)=int0^x |t-1| dt, where 0 lt= x lt= 2 then (a) range of f(x) ...

    Text Solution

    |

  15. If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function fo...

    Text Solution

    |

  16. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a)f(x)+f...

    Text Solution

    |

  17. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  18. If In=int0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI(n+1)=2^(-n...

    Text Solution

    |

  19. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^(x)dot Then

    Text Solution

    |

  20. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |