Home
Class 12
MATHS
Let f(x) be a non-constant twice differe...


Let f(x) be a non-constant twice differentiable function defined on `(oo, oo)` such that `f(x) = f(1-x)` and `f''(1/4) = 0`. Then
(a) `f'(x)`vanishes at least twice on `[0,1]` (b) `f'(1/2)=0`
(c) `∫_{-1/2}^{1/2}f(x+1/2)sinxdx=0`
(d) `∫_{0}^{1/2}f(t)e^sinxtdt=∫_{1/2}^{1}f(1−t)e^sinπtdt`

A

`f'(x)` vanishes at least twice on `[0,1]`

B

`f'(1/2)=0`

C

`int_(-1//2)^(1//2)f(x+1/2)sinxdx=0`

D

`int_(0)^(1//2)f(t)e^(sinxt)dt=int_(t//2)^(1)f(1-t)e^(sinpit)dt`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D


`f(x)=f(1-x)`
Replacing `x` by `1/2+x`, we get
`f(1/2+x)=f(1/2-x)`…………..1
Henc `f(x+1//2)` is an even function or `f(x+1//2)sinx` is an odd function.
Also `f'(x)=f'(1-x)`……………2
and for `x=1//2` we have `f'(1//2)=0`
Also `int_(1//2)^(1)f(1-t)e^(sinpit)dt=-int_(1//2)^(0)f(y)e^(sinpiy) dy`
(by putting `1-t=y`)
Since `f'(1//4)=0, f'(3//4)=0` [from equation (2)].
Also `f'(1//2)=0` [from equation (2)]
Thus `f'(x)=0` at least in `[0,1]` (by Rolle's theorem).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

Let f be twice differentiable function satisfying f(1) = 1, f(2) = 4, f(3) =9 then :

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:Rto R be a twice continuously differentiable function such that f(0)=f(1)=f'(0)=0 . Then

If f(x) and g(x) are twice differentiable functions on (0,3) satisfying f"(x) = g"(x), f'(1) = 4, g'(1)=6,f(2)=3, g(2) = 9, then f(1)-g(1) is

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1) =1 , then

Let f:(0,oo)toRR be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)ne1 . Then-

If f(x) and g(x) are twice differentiable functions on (0, 3) satisfying f''(x)=g''(x), f'(1)=4,g'(1)=6,f(2)=3,g(2)=9," then "f(1)-g(1) is -

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

CENGAGE PUBLICATION-DEFINITE INTEGRATION -MCQ_TYPE
  1. Iff(x)=int0^x2|t|dt ,t h e n g(x)=x|x| g(x) is monotonic g(x) is di...

    Text Solution

    |

  2. If An=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,Bn=int0^(pi/2)((sinn x)/(sinx)...

    Text Solution

    |

  3. The value of int0^oo (dx)/(1+x^4) is

    Text Solution

    |

  4. The value of int0^1e^(x^2-x)dx is (a) <1 (b) >1 (c) > e^(-1/4) (d)...

    Text Solution

    |

  5. Ifinta^b(f(x))/(f(x)+f(a+b-x))dx=10 ,t h e n (a) b=22 ,a=2 (b) b=15 ...

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int0^x |t-1| dt, where 0 lt= x lt= 2 then (a) range of f(x) ...

    Text Solution

    |

  8. If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function fo...

    Text Solution

    |

  9. If f(x)=int0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a)f(x)+f...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I(...

    Text Solution

    |

  11. If In=int0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI(n+1)=2^(-n...

    Text Solution

    |

  12. L e tf:[1,oo)->Ra n df(x)=int1^x(e^t)/t dt-e^(x)dot Then

    Text Solution

    |

  13. If f(x)=inta^x[f(x)]^(-1)dx and inta^1[f(x)]^(-1)dx=sqrt(2), then

    Text Solution

    |

  14. A Function f(x) satisfies the relation f(x)=e^x+int0^1e^xf(t)dtdotT h ...

    Text Solution

    |

  15. If int0^x {int0^u f(t) dt}du is equal to (a) int0^x (x-u) f(u) (b...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x) [x] dx = int(0)^([x]) xdx, x notin integer (where, [.] a...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function then for alphaepsilon (0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |