Home
Class 12
MATHS
If I(m)=int(0)^(pi)log(e)(1-2mcosx+m^(2)...

If `I(m)=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx`, Then find the value of I(81/9)

Text Solution

Verified by Experts

The correct Answer is:
2

`I(m)=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx`
`impliesI(-m)=int_(0)^(pi)log_(e)(1+2mcosx+m^(2))dx`
`=int_(0)^(pi)log_(e)(1+2mcos(pi-x)+m^(2))dx`
`=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx`
`=I(m)=I(m)`
`impliesI(m)+I(-m)=int_(0)^(pi)log_(e)(1-2m^(2)cos2x+m^(4))dx`
put `2x=t`
`impliesI(m)+(-m)=I(m^(2))`
`implies2I(m)=I(m^(2))`
`implies(I(m^(2)))/(I(m))=2`
`=(I(9))/(I(3))=2` and `(I(25))/(I(5))=2`
`implies(I(81))/(I(91))=2` and `(I(9))/(I(3))=2`
`implies (I(81))/(I(3))=4`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

If I_(m)=int_(1)^(e )(log_(e)x)^(m)dx , then the value of (I_(m)+mI_(m-1)) is -

int _(0)^(pi/2) log(cotx)dx

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of (I_(8)+I_(6)) is -

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1)) , then the value of int_(0)^(pi)(dx)/((sqrt(10)-cosx)^3) is

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

Evaluate : int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

The value of int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx then the value of I is equal to

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then find the value of f(log_(e)2) is

Evaluate: int_(1)^(e)(log_(e)x)^(3)dx