Home
Class 12
MATHS
Let f:[0,oo) to R be a continuous strict...

Let `f:[0,oo) to R` be a continuous strictly increasing function, such that `f^3(x)=int_0^x tdotf^2(t)dt` for every `xgeq0.` Then value of `f(6)` is_______

Text Solution

Verified by Experts

The correct Answer is:
6

Given `f^(3)(x)=int_(0)^(x)=int_(0)^(x)t.f^(2)(t)dt`
Differentiating `3f^(2)(x)f'(x)=xf^(2)(x)`
`f(x)!=0`
`:.f'(x)=x/3:.f(x)=(x^(2))/6+3`
But `f(0)=0impliesC=0`
`f(6)=6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:Rto R be a twice continuously differentiable function such that f(0)=f(1)=f'(0)=0 . Then

Let f:[1,oo) → [2, ∞) be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

Let f: R to R be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a continuous function which satisfies f(x)=int_(0)^(x)f(t)dt . Then the value of f(log_(e)5) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

Let f : R rarr R be a continuous function which satisfies f(x) = int_0^x f(t) dt . Then the value of f(log_e 5) is

CENGAGE PUBLICATION-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  2. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  3. Let f:[0,oo) to R be a continuous strictly increasing function, such t...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3)*intt^2f(u)d u)dt , ...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oox^(2n+1)dote^(-xdx)=360 , then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^tsin(x-t)dt...

    Text Solution

    |

  10. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find the value of 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. If In=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11))is equal to

    Text Solution

    |

  13. Evaluate: 5050(int0^1(1-x^(50))^(100)dx)/(int0^1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. If f(x)=x+int0^1t(x+t)f(t)dt, then the value of 23/2\ f(0) is equal to

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)(x-x^(2))-sqrt((1-x^(2))(2x-x^(2)))dx i...

    Text Solution

    |