Home
Class 12
MATHS
If x^y=e^(x-y), Prove that dy/dx=logx/(...

If `x^y=e^(x-y)`, Prove that `dy/dx=logx/(1+logx)^2`

Text Solution

Verified by Experts

`"We have "x^(y)=e^(x-y)`
`"or "e^(ylog x)=e^(x-y)" "[becausex^(y)=e^(log x^(y))=e^(y log x)]`
`"or "ylog x = x-y`
`"or y=(x)/(1+log x)`
On differentiating both the sides w.r.t. x, we get
`(dy)/(dx)=((1+log x)xx1-x(0+(1)/(x)))/((1+ log x)^(2))=(log x)/((1+ log x )^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

If e^x+e^y=e^(x+y) , prove that dy/dx=-e^(y-x)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If y= x^(y^x) , prove that y_1 = (ylogy(1+x logx logy)/(x log x (1-xlogy))

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

Find dy/dx : y=(logx)^x

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If y=(x)/(x+2) prove that x(dy)/(dx)=y(1-y)

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2