Home
Class 12
MATHS
Find(dy)/(dx) if x^y=y^x...

Find`(dy)/(dx) if x^y=y^x`

Text Solution

Verified by Experts

The correct Answer is:
`x^(x)(1+ log x)`

`"Let "y=x^(x). Then, y= e^(xlog x).`
Differentiating both sides w.r.t. x, we get
`(dy)/(dx)=e^(x log x)(d)/(dx)(x log x)`
`=x^(x)(log x+ x(1)/(x))" "[becausee^(x log x)=x^(x)]`
`=x^(x)(1+ log x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) of y= x^3

Find (dy)/(dx), " if "y^(x)+x^(y)+x^(x)= a^(b) .

Find (dy)/(dx) if y=sin(2x)

Find (dy)/(dx) for y=e^(6x)

Find (dy)/(dx) for y=x^xdot

Find (dy)/(dx)" if "x-y = pi .

Find (dy)/(dx)," if "x= at^(2), y= 2at .

Find (dy)/(dx) , when x^(y)+y^(x)=1

Find (dy)/(dx) when : x^(y)=y^(x)

Find (dy)/(dx) when : x^(y)*y^(x)=1