Home
Class 12
MATHS
If y log x= x-y, prove that (dy)/(dx)= (...

If `y log x= x-y`, prove that `(dy)/(dx)= (log x)/((1+log x)^(2))`

Text Solution

Verified by Experts

`"We have "x^(y)=e^(x-y)`
`"or "e^(ylog x)=e^(x-y)" "[becausex^(y)=e^(log x^(y))=e^(y log x)]`
`"or "ylog x = x-y`
`"or y=(x)/(1+log x)`
On differentiating both the sides w.r.t. x, we get
`(dy)/(dx)=((1+log x)xx1-x(0+(1)/(x)))/((1+ log x)^(2))=(log x)/((1+ log x )^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

xdy/dx + 2y = log x

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y= x^(y^x) , prove that y_1 = (ylogy(1+x logx logy)/(x log x (1-xlogy))

Find (dy)/(dx) , when y=(x log x)^(log(logx))

Find (dy)/(dx) , when y= log f(x)

If y = log_10x , then (dy)/(dx) is equal to