Home
Class 12
MATHS
Find (dy)/(dx) for y=x^xdot...

Find `(dy)/(dx)` for `y=x^xdot`

Text Solution

Verified by Experts

The correct Answer is:
`x^(x)(1+ log x)`

`"Let "y=x^(x). Then, y= e^(xlog x).`
Differentiating both sides w.r.t. x, we get
`(dy)/(dx)=e^(x log x)(d)/(dx)(x log x)`
`=x^(x)(log x+ x(1)/(x))" "[becausee^(x log x)=x^(x)]`
`=x^(x)(1+ log x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=e^(6x)

Find (dy)/(dx) if x^y=y^x

Find (dy)/(dx) for y=cos 55x

Find (dy)/(dx) of y= x^3

Find (dy)/(dx) for y=x cosx logxdot

Find (dy)/(dx) if y=sin(2x)

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

"Find "(dy)/(dx)" for "y=log(x+sqrt(a^(2)+x^(2))).

"Find "(dy)/(dx)" for "y=log(x-sqrt(a^(2)+x^(2))).

Find (dy)/(dx)"for"y=xsinxlogxdot