Home
Class 12
MATHS
(a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftan...

`(a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftanalpha"i s"` `3/4` (b) `4/3` (c) `2a(a^2+1)` (d) `2a(a^2-1)`

A

`3//4`

B

`4//3`

C

`2a//(a^2+1)`

D

`2a//(a^2-1)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Divide by `cosalpha` and square both sides abd let `tanalpha=t` so that ` sec^2alpha=1+t^2`
`rArr [(a+2)t+(2a-1)]^2=[(2a+1)^2(1+t^2)]`
`rArr t^3[(a+2)^2-(2a+1)^2]+2(a+2)(2a-1)t+[(2a-1)^2-(2a+1)^2]=0`
`or 3(1-a^2)t^2+2(2a^2+3a-2)t-4xx2a=0`
`or 3(1-a^2)t^2+2(2a^2+3a-2)t-4xx2a=0`
`or t(1-a^2)t^2-4(1-a^2)t-6at-8a=0`
`or (3t-4)[(1-a^2)t+2a]=0`
`or t-tanalpha=4/3or(2a)/(a^2-1)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

(a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftanalpha"i s" (a) 3/4 (b) 4/3 (c) 2a(a^2+1) (d) (2a)/(a^2-1)

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

If (2sinalpha)/(1+cosalpha+sinalpha) =x, then (1-cosalpha+sinalpha)/(1+sinalpha) =

If (2sinalpha)/(1+cosalpha+sinalpha)=x then find (1-cosalpha+sinalpha)/(1+sinalpha)

The value of the integral int_0^1(dx)/(x^2+2xcosalpha+1) is equal to (a) sinalpha (b) alphasinalpha (c) alpha/(2sinalpha) (d) alpha/2sinalpha

The value of cos(1/2cos^(-1)(1/8)) is (a) 3/4 (b) -3/4 (c) 1/(16) (d) 1/4

2tan^(-1)(-2) is equal to (a) -cos^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -pi+cot^(-1)(-3/4)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

sinalpha+sinbeta=a and cosalpha+cosbeta=b prove that , tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2))

If sinalpha+sinbeta=a and cosalpha+cosbeta=b , prove that tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .