Home
Class 12
MATHS
If b >1,sint >0,cost >0a n d(log)b(sint)...

If `b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost)` is equal to `1/2(log)_b(a-b^(2x))` (b) `2log(1-b^(x/2))` `(log)_bsqrt(1-b^(2x))` (d) `sqrt(1-x^2)`

A

`1/2log_b(1-b^(2x))`

B

`2log(1-b^(x//2))`

C

`log_bsqrt(1-b^(2x))`

D

`sqrt(1-x^2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`log_bsin_t=xorsint=b^x`
Let `log_b(cost)=y,then b^y=cost`
`or b^(2y)=cos^2t=1-sin^2t=1-b^(2x)`
`or 2y=log_b(1-b^(2x))`
`or y=1/3log_b(1-b^(2x))=log_bsqrt(1-b^(2x))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

The sequence log a, log (a^(2)/b), log (a^(3)/b^(2)) is:

If f(x)=(log)_x(log x),t h e nf^(prime)(x) at x=e is equal to (a) 1/e (b) e (c) 1 (d) zero

If (log)_(10)5=aa n d(log)_(10)3=b ,t h e n (A) (log)_(30)8=(3(1-a))/(b+1) (B) (log)_(40)15=(a+b)/(3-2a) (C) (log)_(243)32=(1-a)/b (d) none of these

2^((sqrt(log_a(ab)^(1//4)+log_b(ab)^(1//4))-sqrt(log_a(b/a)^(1//4)+log_b(a/b)^(1//4))) sqrt(log_a(b)) =

For all x in (0,1) (a) e^x (b) (log)_e (1+x) (c) sin x > x (d) (log)_e x > x

int(ln(tanx)/(sinxcosx)dx is equal to (a) 1/2ln(tanx)+c (b) 1/2ln(tan^2x)+c (c) 1/2(ln(tanx))^2+c (d) none of these

Solve for: x :(2x)^((log)_b2)=(3x)^((log)_b3) .

Find the domain of f(x)=(log)_(10)(log)_2(log)_(pi/2)(t a n^(-1)x)^(-1)

If the equation 2^x+4^y=2^y + 4^x is solved for y in terms of x where x<0, then the sum of the solution is (a) x(log)_2(1-2^x) (b) x+(log)_2(1-2^x) (c) (log)_2(1-2^x) (d) x(log)_2(2^x+1)