Home
Class 12
MATHS
If (y+3)/(2y+5)=sin^2x+2cosx+1, then the...

If `(y+3)/(2y+5)=sin^2x+2cosx+1,` then the value of `y` lies in the interval `(-oo,-8/3)` (b) `(-(12)/5,oo)` `(-8/3,-(12)/5)` (d) `(-8/3,oo)`

A

`(-oo,-8/3]`

B

`[-12/5,oo)`

C

`[-8/3,-12/5]`

D

`[-8/3,oo)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

We have
`(y+3)/(2y+5)=sin^2x+2cosx+1`
`:. Cos^2x-2cosx+1=3-(y+3)2(2y+5)`
`:. (cosx-1)^2 =(5y+12)/(2y+5)`
Now, `-1le cosx-1le0`
`:. -2le cosx -1le0`
`:. 0le(cosx-1)^2le4`
`:. 0le(5y+12)/(2y+5)le4`
`:. 0le(5y+12)/(2y+5)and (5y+12)/(2y+5)le4`
`:. (5y+12)/(2y+5)ge0and(3y+8)/(2y+5)ge0`
`:. (-oo,-5/2)uu[-12/5,oo)and(-oo,-8/3)uu[-5/2,oo)`
`:. y in(-oo,-8/3]uu[-12/5,oo)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

If (3x + 2y, 12) = (5, 2x-3y), find the value of x and y.

x^2/(r^2-r-6)+y^2/(r^2-6r+5)=1 will represent ellipse if r lies in the interval (a).(- oo ,2) (b). (3, oo ) (c). (5, oo ) (d).(1, oo )

If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of values of c is (a) (2,oo) (b) (4,oo) (c) (-oo,-2) (d) (-oo,-4)

If a=1/2(5-isqrt3) then find the value of a^3-6a^2+12a-8

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cot(x/2)sin^2(x/2) does not possess critical points is (a) (-oo,-4/3) (b) (-oo,-1) (c) [1,oo) (d) (2,oo)

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

If the root of the equation (a-1)(x^2-x+1)^2=(a+1)(x^4+x^2+1) are real and distinct, then the value of a in a) (-oo,3] b) (-oo,-2)uu(2,oo) c) [-2,2] d) [-3,oo)

If (2x)/3=(4y)/5=(7z)/9 then find the value of (4x+12y-21z)/(3y) .