Home
Class 12
MATHS
If cos alpha =1/2(x+1/x),cos beta=1/2(y+...

If `cos alpha =1/2(x+1/x),cos beta=1/2(y+1/y)` then evaluate `cos(alpha-beta)`

A

`sin(alpha+beta+gamma)=singammaAAgammainR`

B

`cosalphacosbeta=1AAalpha,beta inR`

C

`(cosalpha+cosbeta)^2=4AAalpha,beta in R`

D

`sin (alpha+beta+gamma)=sinalpha+sinbeta+singammaAAa,b,gammainR`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`cosalpha=1/2(x+1/x)andcosbeta=1/2(y+1/y)`
since `xygt0`,we have
`x+1/2ge2orle-2andy+1/yge2orle-2`
`rArrcosalpha=1,cosbeta=1`
`or cosalpha=-1,cosbeta=-1`
`:. cosalphacosbeta=1`
`rArralpha+beta" is an even multiple of " pi`
`(cosalpha+cosbeta)^2=4`
`rArr sin(alpha+beta+gamma)=sin(2npi+gamma)=singamma`
Also, `sinalpha=sinbeta=0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE PUBLICATION|Exercise Archives (Numerical value type)|4 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|2 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be such that pi lt alpha lt beta lt 3pi, if sin alpha + sin beta =- (21)/(65) and cos alpha + cos beta =(27)/(65), then the value of cos ""(alpha - beta)/(2) is-

Let alpha,beta be such that pi lt alpha-beta lt3 pi . If sin alpha+ sin beta=(-21)/65 and cos alpha+ cos beta=(-27)/65 , then the value of cos((alpha-beta)/2) is

If sin alpha + sin beta = p "and" cos alpha + cos beta = q "then the value of " "tan" (alpha-beta)/2 will be-

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" (2(1-cos (alpha - beta)))/(cos beta - cos alpha)^(2)=

If (sin (theta- alpha))/(sin (theta- beta))=(x)/(y) and (cos (theta- alpha))/(cos(theta-beta))=(a)/(b) , then show that cos(alpha- beta)=(ax+by)/(bx+ay) .

In sin alpha+ sin beta=(1)/(2) and cos alpha+ cos beta =(5)/(4) , find the value of tan alpha+tan beta .

If tan alpha =(1+2^(-x))^(-1) and tan beta =(1+2^(x+1))^(-1) then the value of (alpha + beta) is-

P( asec alpha, b tan alpha ) and Q (a sec beta, b tan beta) are two given points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1. Show that the equation of the chord PQ is (x)/(a) cos (alpha - beta)/(2) - (y)/(b) sin (alpha + beta)/(2) = cos (alpha+beta)/(2).

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=