Home
Class 12
MATHS
If I m((z-1)/(e^(thetai))+(e^(thetai))/(...

If `I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0` , then find the locus of `zdot`

A

a circle with unit radius

B

a circle with radius `3` units

C

a straight line through the point `(3,0)`

D

a parabola with the vertex `(3,0)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`(a,c)` Let `z-3=re^(iphi)`
`:. (z-3)/(e^(itheta))+(e^(itheta))/(z-3)=re^(i(phi-theta))+(1)/(r )e^(i(theta-phi))`
Imaginargy part of the above `=r sin (phi-theta)-(1)/(r )sin(phi-theta)`
Given that `r sin(phi-theta)-(1)/(r )sin(phi-theta)=0`
`impliesr-(1)/(r )=0` or `sin(phi-theta)=0`
`impliesr-(1)/(r )=0impliesr=1`
`implies|z-3|=1`
`impliesz` lies on a circle with unit radius.
`sin(phi-theta)=0impliesphi=theta`
`:.z-3=re^(itheta)`
`z-3=rcostheta`, `y=r sin theta`
`impliesx-3=rcostheta`, `y=rsin theta`
`(x-3)/(costheta)=(y)/(sintheta)=r`
This represents a straight line through `(3,0)`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If w=z/[z-1/(3i)] and |w|=1, then find the locus of z

if amp (z-1)/(z+1)=pi/3 , then the locus of z is

If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of the point representing in the complex plane.

If z = x + iy and arg ((z-1)/(z+1))=(pi)/(4) , then the locus of (x, y) is

If arg ((z-1)/(z+1))=pi/4 ,, then show that in complex plane, the locus of z is a cricle.

If the angle between the plane x-3y+2z=1 and the line (x-1)/2=(y-1)/1=(z-1)/(-3) is, theta then the find the value of cos e cthetadot

If a rg(z_1)=170^0 and arg(z_2)=70^0 , then find the principal argument of z_1z_2dot

If the equation |z-a|+|z-b|=3 represents an ellipse and a ,b in C ,w h e r ea is fixed, then find the locus of bdot

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|