Home
Class 12
MATHS
If a,b,x,y are real number and x,y gt 0,...

If `a,b,x,y` are real number and `x,y gt 0`, then `(a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y)` so on solving it we have `(ay-bx)^(2) ge 0`.
Similarly, we can extend the inequality to three pairs of numbers, i.e,
`(a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z)`
Now use this result to solve the following questions.
The value of `(a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c)` is

A

`3`

B

`3//2`

C

`6`

D

`9`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))`
`=(1//a^(2))/(ab+ac)+(1//b^(2))/(ab+bc)+(1//c^(2))/(ac+bc)`
`ge (((1)/(a)+(1)/(b)+(1)/(c ))^(2))/(2(ab+bc+ac))` ……….`(i)`
Now `((1)/(a)+(1)/(b)+(1)/(c ))^(2)=((ab+bc+ac)^(2))/((abc)^(2))`
`=(ab+bc+ac)^(2)` (as `abc=1`)
`:.` From `(i)`, `(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))`
` ge((ab+bc+ac))/(2)`
`ge(3*3sqrt((abc)^(2)))/(2)` (using `A.M. ge G.M.`)
`ge (3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Illustration|29 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. If abc=1 , then the minimum value of (1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b)) is

The line y= mx +c touches the hyperbola b^(2) x^(2) - a^(2) y^(2) = a^(2)b^(2) if-

Find the value of y by eliminating x : (x+a)/(2a+b)=(y+2b)/(a+b), bx+ay=a^(2)+b^(2)

If a tan x+ b tan y+ c tan z=m , then show that the minimum value of tan^(2)x+tan^(2)y+tan^(2)z "is" (m^(2))/(a^(2)+b^(2)+c^(2)) .

If x=a sec theta cosphi, y = b sec theta sin phi and z=c tan theta , then prove that (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=1.

Eliminate x and y from the following equations : a sin ^(2)+ b cos^(2) x=c, b sin ^(2) y+ a cos^(2) y=d, a tan x= b tan y .

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

Solve (by any method) : (a-b)/x+(a+b)/y=(2(a^(2)+b^(2)))/((a^(2)-b^(2))) (a+b)/x+(a-b)/y=2

If x/a = y/b = z/c , then show that (x^(2)-yz)/(a^(2)-bc) = (y^(2)-zx)/(b^(2) - ca) = (z^(2)-xy)/(c^(2)-ab)

Show that the length of the common chord of the circles (x-a)^(2) + (y-b)^(2) = c^(2) and (x-b)^(2) + (y-a)^(2) = c^(2) is sqrt(4c^(2) -2(a-b)^(2)) unit.