Home
Class 12
MATHS
Let z = ((sqrt(3))/(2) + (i)/(2))^(5)+((...

Let `z = ((sqrt(3))/(2) + (i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5)`. If R(z) and I(z), respectively, denote the real and imaginary parts of z, then

Text Solution

Verified by Experts

We have `((sqrt(3))/(2) +(i)/(5))^(5) +((sqrt(3))/(2) -(i)/(2))^(5)`
`= (sqrt(3)/(2) + (i)/(2))^(5) + (bar(sqrt(3)/(2) + (i)/(2)))^(5)`
`=(sqrt(3)/(2) + (i)/(5))^(5) + ((bar(sqrt(3)/(2) + (i)/(2)))^(5)) (because (barz)^(n) = bar((z^(n))))`
`= z + barz`, where `z = (sqrt(3)/(2) + (i)/(2))^(5)`
`= 2Re(z)`
Hence, given complex number is real.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5 , then a. R e(z)=0 b. I m(z)=0 c. R e(z)>0 d. R e(z)>0,I m(z)<0

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

Let z_(1) =2-i, z_(2) =-2 + i , Find (Re(z_(1)z_(2))/barz_(1))

Let z=9+b i ,and b is nonzero real and i^2=-1. If the imaginary part of z^2a n dz^3 are equal, then b/3 is ______.

Let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) for which P^2=-I is

If z^4+1=sqrt(3)i (A) z^3 is purely real (B) z represents the vertices of a square of side 2^(1/4) (C) z^9 is purely imaginary (D) z represents the vertices of a square of side 2^(3/4)

If abs(z-i)le2 and z_0=5+3i then the maximum value of abs(absiz+z_0) is

If z=(sqrt(5-12i)+sqrt(-5-12i)), then the principal value of arg z will be

CENGAGE PUBLICATION-COMPLEX NUMBERS-ILLUSTRATION
  1. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  2. If z = x + iy lies in the third quadrant, then prove that (barz)/(z) ...

    Text Solution

    |

  3. Let z = ((sqrt(3))/(2) + (i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5). If ...

    Text Solution

    |

  4. Find the relation if z1, z2, z3, z4 are the affixes of the vertices of...

    Text Solution

    |

  5. Let z1, z2, z3 be three complex numbers and a ,b ,c be real numbers no...

    Text Solution

    |

  6. Find real values of x and y for which the complex numbers -3+i x^2y an...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  9. Let z be a complex number satisfying the equation z^2-(3+i)z+m+2i=0,w ...

    Text Solution

    |

  10. Show that the equation Z^4+2Z^3+3Z^2+4Z+5=0 has no root which is eithe...

    Text Solution

    |

  11. Find the square root of the following: 5+12 i

    Text Solution

    |

  12. Evaluate : i^(135)

    Text Solution

    |

  13. Solve for z : z^2-(3-2i)z=(5i-5)dot

    Text Solution

    |

  14. Solve the equation (x-1)^3+8=0 in the set C of all complex numbers.

    Text Solution

    |

  15. If n is n odd integer that is greater than or equal to 3 but not a mul...

    Text Solution

    |

  16. omega is an imaginary root of unity. Prove that If a+b+c = 0 th...

    Text Solution

    |

  17. Find the complex number omega satisfying the equation z^3-8i and lying...

    Text Solution

    |

  18. (1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1...

    Text Solution

    |

  19. If sec alpha and alpha are the roots of x^2-p x+q=0, then (a) p^2=q(q-...

    Text Solution

    |

  20. Let z(1)= cos 12^(@) + I sin 12^(@) and z(2) = cos 48^(@) + i. sin 4...

    Text Solution

    |