Home
Class 12
MATHS
If complex number z=x +iy satisfies the...

If complex number z=x +iy satisfies the equation `Re (z+1) = |z-1|`, then prove that z lies on `y^(2) = 4x`.

Text Solution

Verified by Experts

We have `Re(z+1) = |z-1|`
`rArr Re (x+iy+1) = |x + iy-1|`
`rArr x + 1 = sqrt((x-1)^(2) + y^(2)))`
`rArr (x+1)^(2) = (x+1)^(2) + y^(2)`
`rArr y^(2) = 4x`
Thus, z lies on `y^(2) = 4x`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

The complex number z satisfying the equation |z-i|=|z+1|=1 is

The complex number z satisfying the question |(i -z)/(i+z)|=1 lies on-

All complex numbers 'z' which satisfy the relation |z-|z+1||=|z+|z-1|| on the complex plane lie on the

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

A complex number z satisfies the equation |Z^(2)-9|+|Z^(2)|=41 , then the true statements among the following are

If the complex number z satisfies the equations |z-12|/|z-8i|=(5)/(3) and |z-4|/|z-8| =1, "find" z.

If z=x+iy and |2z-1| =|z-2|then prove that x^2+y^2=1

If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0 . If this equation has a root re^(itheta) with 90^@<0<180^@ then the value of theta is

The complex numbers z=x+iy which satisfy the equation |(z-5i)/(z+5i)|=1 lie on (a) The x-axis (b) The straight line y=5 (c) A circle passing through the origin (d) Non of these

The complex no z=x+iy satisfying the condition amp((z-i)/(z+i))=pi/4 lies on

CENGAGE PUBLICATION-COMPLEX NUMBERS-ILLUSTRATION
  1. Find nonzero integral solutions of |1-i|^x=2^xdot

    Text Solution

    |

  2. Let z be a complex number satisfying |z| = 3 |z-1|. Then prove that ...

    Text Solution

    |

  3. If complex number z=x +iy satisfies the equation Re (z+1) = |z-1|, th...

    Text Solution

    |

  4. Solve the equation |z|=z+1+2idot

    Text Solution

    |

  5. Find the range of real number alpha for which the equation z+alpha|z-1...

    Text Solution

    |

  6. Find the Area bounded by complex numbers arg|z|lepi/4 and |z-1|lt|z-3|

    Text Solution

    |

  7. Prove that traingle by complex numbers z(1),z(2) and z(3) is equilate...

    Text Solution

    |

  8. Show that e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.

    Text Solution

    |

  9. Z1!=Z2 are two points in an Argand plane. If a|Z1|=b|Z2|, then prove t...

    Text Solution

    |

  10. Find the real part of (1-i)^(-i)dot

    Text Solution

    |

  11. If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

    Text Solution

    |

  12. Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

    Text Solution

    |

  13. If a rg(z1)=170^0a n d arg(z2)70^0 , then find the principal argument ...

    Text Solution

    |

  14. Find the value of expression (cos(pi/2)+isin(pi/2))(cos(pi/(2^2))+isin...

    Text Solution

    |

  15. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  16. If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

    Text Solution

    |

  17. If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

    Text Solution

    |

  18. It is given the complex numbers z(1) and z(2), |z(1)| =2 and |z(2)| ...

    Text Solution

    |

  19. Solve the equation z^(3) = barz (z ne 0)

    Text Solution

    |

  20. If 2z1//3z2 is a purely imaginary number, then find the value of "|"(z...

    Text Solution

    |