Home
Class 12
MATHS
Solve the equation |z|=z+1+2idot...

Solve the equation `|z|=z+1+2idot`

Text Solution

Verified by Experts

`|z|= z+1 + 2i`
`rArr sqrt(x^(2) + y^(2)) = x + iy + 1+ 2i =x+1+(2+y)i`
`rArr sqrt(x^(2) + y^(2)) = x + 1 and 0=2 +y or y = -2`
`rArr sqrt(x^(2) + 4)) = x+1`
`or x^(2) + 4 = x^(2) + 2x + 1`
`or 2x = 3`
`or x=(3)/(2)`
`rArr x + iy = (3)/(2)-2i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Solve the equation z^3= z (z!=0)dot

Solve the equation z^(2)+|Z|=0 where z is a complex quantity.

The complex number z satisfying the equation |z-i|=|z+1|=1 is

Solve the equation for x, y, z and t, if 2[(x, y),(z,t)]+3[(1,-1),(0,2)]=3[(3,5),(4,6)]

Find A^(-1) if A = [1,2,-3][2,3,2] [3,-3,-4] Hence solve the equations x+2y-3z =-4, 2x+3y+2z=2, 3x-3y-4z=11.

If z_1,z_2,z_3 are any three roots of the equation z^6=(z+1)^6, then arg((z_1-z_3)/(z_2-z_3)) can be equal to

Prove that the equations kx + y + z = 1, x + ky + z = k and x + y + kz = k^(2) will have unique solution when k ne 1 and k ne -2 . Solve the equations in this case.

The solution of the equation absz-z=1+2i is

Solve the following equations by Cramer's method: x+y=1,y+z= 2,x+z=3.

Solve the system of equations in x,y and z satisfying the following equations x+[y]+{z}=3.1, y+[z]+{x}=4.3 and z+[x]+{y}=5.4

CENGAGE PUBLICATION-COMPLEX NUMBERS-ILLUSTRATION
  1. Let z be a complex number satisfying |z| = 3 |z-1|. Then prove that ...

    Text Solution

    |

  2. If complex number z=x +iy satisfies the equation Re (z+1) = |z-1|, th...

    Text Solution

    |

  3. Solve the equation |z|=z+1+2idot

    Text Solution

    |

  4. Find the range of real number alpha for which the equation z+alpha|z-1...

    Text Solution

    |

  5. Find the Area bounded by complex numbers arg|z|lepi/4 and |z-1|lt|z-3|

    Text Solution

    |

  6. Prove that traingle by complex numbers z(1),z(2) and z(3) is equilate...

    Text Solution

    |

  7. Show that e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.

    Text Solution

    |

  8. Z1!=Z2 are two points in an Argand plane. If a|Z1|=b|Z2|, then prove t...

    Text Solution

    |

  9. Find the real part of (1-i)^(-i)dot

    Text Solution

    |

  10. If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

    Text Solution

    |

  11. Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

    Text Solution

    |

  12. If a rg(z1)=170^0a n d arg(z2)70^0 , then find the principal argument ...

    Text Solution

    |

  13. Find the value of expression (cos(pi/2)+isin(pi/2))(cos(pi/(2^2))+isin...

    Text Solution

    |

  14. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  15. If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

    Text Solution

    |

  16. If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

    Text Solution

    |

  17. It is given the complex numbers z(1) and z(2), |z(1)| =2 and |z(2)| ...

    Text Solution

    |

  18. Solve the equation z^(3) = barz (z ne 0)

    Text Solution

    |

  19. If 2z1//3z2 is a purely imaginary number, then find the value of "|"(z...

    Text Solution

    |

  20. Find the complex number satisfying the system of equations z^3+ omega^...

    Text Solution

    |