Home
Class 12
MATHS
Find the complex number satisfying the s...

Find the complex number satisfying the system of equations `z^3+ omega^7=0a n dz^5omega^(11)=1.`

Text Solution

Verified by Experts

`z^(3)+bar(omega)^(7)=0`
`impliesz^(3)=-bar(omega)^(7)`
`implies|z|^(3)=|-bar(omega)|^(7)=|omega|^(7)`
`implies|z|^(15)=|omega|^(35)`
Also, `z^(5)omega^(11)=1`
`implies|z|^(5)|omega|^(11)=1`
`implies|z|^(15)|omega|^(33)=1`
From (1) and (2), we have
`|z|=|omega|=1`
Again, `bar(omega)^(7)=-z^(3)" and "omega^(11)=z^(-5)`
`impliesbar(omega)^(77).omega^(77)=-z^(33).z^(-35)`
`impliesz^(2)=-1=i^(2)impliesz=+-i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Find the complex number satisfying system of equation z^(3)=-((omega))^(7) and z^(5).omega^(11)=1

The complex number z satisfying the equation |z-i|=|z+1|=1 is

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

Find the complex number omega satisfying the equation z^3=8i and lying in the second quadrant on the complex plane.

If z and w are two complex numbers simultaneously satisfying the equations, z^3+w^5=0 and z^2 . overlinew^4 = 1, then

Find the number of complex numbers which satisfies both the equations |z-1-i|=sqrt(2)a n d|z+1+i|=2.

Number of imaginary complex numbers satisfying the equation, z^2=bar(z)2^(1-|z|) is

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let z be a complex number satisfying the equation z^2-(3+i)z+m+2i=0\ ,where m in Rdot . Suppose the equation has a real root. Then find the value of m

CENGAGE PUBLICATION-COMPLEX NUMBERS-ILLUSTRATION
  1. Solve the equation z^(3) = barz (z ne 0)

    Text Solution

    |

  2. If 2z1//3z2 is a purely imaginary number, then find the value of "|"(z...

    Text Solution

    |

  3. Find the complex number satisfying the system of equations z^3+ omega^...

    Text Solution

    |

  4. Express the following in a + ib form: (i) ((cos theta+ isin theta...

    Text Solution

    |

  5. Let z = ((sqrt(3))/(2) + (i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5). If ...

    Text Solution

    |

  6. Prove that the roots of the equation x^4-2x^2+4=0 forms a rectangle.

    Text Solution

    |

  7. If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tannthet...

    Text Solution

    |

  8. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  9. If z=costheta+isintheta is a root of the equation a0z^n+a2z^(n-2)+.......

    Text Solution

    |

  10. If |z1|=1,|z2|=2,|z3|=3,a n d|9z1z2+4z1z3+z2z3|=12 , then find the val...

    Text Solution

    |

  11. If alpha\ a n d\ beta are different complex numbers with |beta|=1,\ fi...

    Text Solution

    |

  12. Given that |z1+z2|^2=|z1|^2+|z2|^2, prove that z1/z2 is purely imagina...

    Text Solution

    |

  13. Let |(z(1) - 2z(2))//(2-z(1)z(2))|= 1 and |z(2)| ne 1, where z(1) and...

    Text Solution

    |

  14. If z1a n dz2 are two complex numbers and c >0 , then prove that |z1+z2...

    Text Solution

    |

  15. If z1, z2, z3, z4 are the affixes of four point in the Argand plane, z...

    Text Solution

    |

  16. if |z1+z2|=|z1|+|z2|, then prove that a r g(z1)=a r g(z2) if |z1-z2|=...

    Text Solution

    |

  17. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  18. Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

    Text Solution

    |

  19. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  20. If z is a complex number, then find the minimum value of |z|+|z-1|+|2z...

    Text Solution

    |