Home
Class 12
MATHS
Minimum value of |z1 + 1 | + |z2 ...

Minimum value of ` |z_1 + 1 | + |z_2 + 1 | + |z _1 z _2 + 1 | if [ z_1 | = 1 and |z_2 | = 1 ` is ________.

Text Solution

Verified by Experts

The correct Answer is:
2

`|z_(1) +1|+|z_(1)+1| +|z_(1)z_(2) +1|`
`ge |z_(1) +1| +|z_(2)+1-z_(1)z_(2) -1|`
` ge|z_(1) +1| +|z_(2)||z_(1) -1|`
`=|z_(1) +1| +|z_(1)-1|`
`ge 2`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|9 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

If Z_1 = -3 + 4i , Z_2 = 12 - 5i , prove that |z_1+z_2|<|z_1-z_2|

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

Find the greatest and the least value of |z_1+z_2| if z_1=24+7i and |z_2|=6.

If z_1 lies on absz=1 and z_2 lies on absz=2 then

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If z_(1) =2 -i, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

For any two complex numbers z_1 and z_2 , , prove that Re (z_1 z_2) = Re z_1 Re z_2 – Imz_1 Imz_2

Let z_1a n dz_2 be two distinct complex numbers and let z=(1-t)z_1+t z_2 for some real number t with 0 |z-z_1|+|z-z_2|=|z_1-z_2| (z-z_1)=(z-z_2) |z-z_1 z -( z )_1z_2-z_1( z )_2-( z )_1|=0 a r g(z-z_1)=a r g(z_2-z_1)

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

CENGAGE PUBLICATION-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Write the following in z=a+ib form: z=e^(-itheta)

    Text Solution

    |

  3. Write the following in z=a+ib form: z=sqrt2e^(i (5pi)/4)

    Text Solution

    |

  4. Write the following in z=a+ib form: z=sqrt2e^(i 3pi/4)

    Text Solution

    |

  5. Write the following in z=a+ib form: z=sqrt2e^(-i pi/4)

    Text Solution

    |

  6. Write the following in z=a+ib form: z=sqrt2e^(-i pi/4)

    Text Solution

    |

  7. Write the following in z=a+ib form: z=sqrt2e^(i pi/4)

    Text Solution

    |

  8. Write the following in z=a+ib form: z=5e^(i pi/6)

    Text Solution

    |

  9. Write the following in z=a+ib form: z=5e^(i pi/3)

    Text Solution

    |

  10. Write the following in z=a+ib form: z=5e^(i pi/4)

    Text Solution

    |

  11. Write the following in z=a+ib form: z=5e^(i pi/2)

    Text Solution

    |

  12. Write the following in z=a+ib form: z=5e^(i pi)

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. Find the complex number z=e^(i(pi)/2) in the form x+iy .

    Text Solution

    |

  19. Find the complex number z=e^(i(pi)/3) in the form x+iy .

    Text Solution

    |

  20. Find the complex number z=e^(i(4pi)/3) in the form x+iy .

    Text Solution

    |