Home
Class 12
MATHS
If |z 1 |= 2 and (1 - i)z2 + (1+...

If ` |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2`, then the minimum value of ` |z_1 - z_2|` is ______.

Text Solution

Verified by Experts

The correct Answer is:
2

`|z_(1)| = 2`
This implies that `z_(1)` lies on the circle having centre at origin and radius 2.
`(1-i) z_(2) +(1+i) barz_(2) = 8sqrt(2)`
`therefore (1-i)(x_(2) + iy_(2)) +(1+i)(x_(2) -iy_(2)) = 8sqrt(2)`
`rArr x_(2) +y_(2) = 4sqrt(2)`
So, `z_(2)` lies on the straight line ` + y = 4sqrt(2)`

`|z_(1) -z_(2)|_("min")=` shortest distance between circle and straight line
= AB
`= OB - OA`
`= 4- 2=2`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|9 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If abs(z-2-2i)=1 , then the minimum value of absz is

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

z is a complex number. The minimum value of |z | + I z - 2| is

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

For all complex numbers z_(1),z_(2) satisfying |z_(1)|=12 and |z_(2) -3-4i|=5, then minimum value of |z_(1)-z_(2)| is-

For all complex niumbers z_1, z_2 satisfying absz_1=12 and abs(z_2-3-4i)=5 , the minimum value of abs(z_1-z_2) is

If z_1, z_2 in C ,z_1^2+z_2^2 in R ,z_1(z_1^2-3z_2^2)=2 and z_2(3z_1^2-z_2^2)=11 , then the value of z_1 ^2+z_2 ^2 is 10 b. 12 c. 5 d. 8

If z_1 and z_2 be two complex numbers such that abs(z_1+z_2)=abs(z_1) +abs(z_2) then the value of argz_1-argz_2 is equal to

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If z_1nez_2 and abs(z_2)=1 the abs((z_1-z_2)/(1-barz_1z_2)) =

CENGAGE PUBLICATION-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Write the following in z=a+ib form: z=e^(-itheta)

    Text Solution

    |

  3. Write the following in z=a+ib form: z=sqrt2e^(i (5pi)/4)

    Text Solution

    |

  4. Write the following in z=a+ib form: z=sqrt2e^(i 3pi/4)

    Text Solution

    |

  5. Write the following in z=a+ib form: z=sqrt2e^(-i pi/4)

    Text Solution

    |

  6. Write the following in z=a+ib form: z=sqrt2e^(-i pi/4)

    Text Solution

    |

  7. Write the following in z=a+ib form: z=sqrt2e^(i pi/4)

    Text Solution

    |

  8. Write the following in z=a+ib form: z=5e^(i pi/6)

    Text Solution

    |

  9. Write the following in z=a+ib form: z=5e^(i pi/3)

    Text Solution

    |

  10. Write the following in z=a+ib form: z=5e^(i pi/4)

    Text Solution

    |

  11. Write the following in z=a+ib form: z=5e^(i pi/2)

    Text Solution

    |

  12. Write the following in z=a+ib form: z=5e^(i pi)

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. Find the complex number z=e^(i(pi)/2) in the form x+iy .

    Text Solution

    |

  19. Find the complex number z=e^(i(pi)/3) in the form x+iy .

    Text Solution

    |

  20. Find the complex number z=e^(i(4pi)/3) in the form x+iy .

    Text Solution

    |