Home
Class 12
MATHS
In A B C , prove that t a n A+t a n B+t...

In ` A B C` , prove that `t a n A+t a n B+t a n Cgeq3sqrt(3),w h e r eA ,B ,C` are acute angles.

Text Solution

Verified by Experts

In `Delta ABC`,
`tan-A+tan B+tan C=tan A tan B tan C`
Also,
`(tan A+ tan B +tan C)/(3) ge 3sqrt(tan A tan B tan C)`
or `tan A tan B tan C ge 3sqrt(tan A tan B tan C)`
or `tan^2 A tan^2 B tan^2 C ge 27`
or `tan A tan B tan C ge 3sqrt(3)`
or `tan A+tan B +tan C ge 3sqrt(3)` .
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Prove that in A B C ,tanA+tanB+tanCgeq3sqrt(3,) where A , B , C are acute angles.

Prove that a sequence in an A.P., if the sum of its n terms is of the form A n^2+B n ,w h e r eA ,B are constants.

Evaluate int_a^b(dx)/(sqrt(x)),w h e r ea , b > 0.

In triangle A B C ,points D , Ea n dF are taken on the sides B C ,C Aa n dA B , respectively, such that (B D)/(D C)=(C E)/(E A)=(A F)/(F B)=ndot Prove that triangle D E F=(n^2-n+1)/((n+1)^2) triangle(A B C)dot

If the roots of the equation x^3+P x^2+Q x-19=0 are each one more that the roots of the equation x^3-A x^2+B x-C=0,w h e r eA ,B ,C ,P ,a n dQ are constants, then find the value of A+B+Cdot

In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A is equal to (a)2 (b) 3 (c) 4 (d) 5.

If the sum of n terms of an A.P. is given by S_n=a+b n+c n^2, w h e r ea ,b ,c are independent of n ,t h e n (a) a=0 (b) common difference of A.P. must be 2b (c) common difference of A.P. must be 2c (d) first term of A.P. is b+c

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these