Home
Class 12
MATHS
If n ge 1 is a positive integer, then pr...

If n `ge` 1 is a positive integer, then prove that `3^(n) ge 2^(n) + n . 6^((n - 1)/(2))`

Text Solution

Verified by Experts

We know that ,
`a^(n) - b^(n) = (a-b) (a^(n-1) + a^(n-2) b + a^(n-3) b^(2) + .. . + b^(n-1))`
`therefore 3^(n) - 2^(n) = 3^(n-1) + 3^(n-2) 2 + 3^(n-3) 2^(2) + … + 2^(n-1)`
Using `A.M. ge G.M` , we get
`(3^(n-1) + 3^(n-2) . 2 + … + 2^(n-1))/(n) ge [(3 * 3^(2) * ... * 3^(n-1)) (2* 2^(2) * ... * 2^(n-1))]^(1//n)`
`3^((n-1)/(2)) * 2((n-1)/(2)) = 6^((n-1)/(2))`
`implies 3^(n) ge 2^(n) + n* 6 ((n-1)/(2))`.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.1|8 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If n be a positive integer greater than 1, prove that (frac(n+1)(2))^n > n

If n (> 1)is a positive integer, then show that 2^(2n)- 3n - 1 is divisible by 9.

If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1.)

If n is a positive integer, show that, (n+1)^(2) + (n+2)^(2) + …+ 4n^(2) = (n)/(6)(2n+1)(7n+1)

If n is a positive integer , then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is -

If x and y are positive real numbers and m, n are any positive integers, then prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt 1/4

If n be a positive integer, then the digit in the unit's place of 3^(2n-1)+2^(2n-1) is -

If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)+.......+(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot

If f(x)=(a-x^(n))^(1/n),agt0 and n is a positive integer, then prove that f(f(x)) = x.