Home
Class 12
MATHS
If a + b =1, a gt 0,b gt 0, prove that (...

If a + b =1, a `gt` 0,b `gt` 0, prove that `(a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)`

Text Solution

Verified by Experts

We know that A.M. of mth power `gt` mth power of A.M.
` therefore (((a+1)/(a))^2+(b+(1)/(b))^2)/(2)gt [((a+(1)/(b))^2+(b+(1)/(b)))/(2)]^2," here "m=2`
or ` (a+(1)/(a))^2+(b+(1)/(b))^2gt (1)/(2)[(a+b)+((1)/(a)+(1)/(b))]^2`
Also, `(a^-1+b^-1)/(2)gt ((a+b)/(2))^2`
or ` (1)/(2)((1)/(a)+(1)/(b))gt (2)/(a+b)`
or ` (1)/(a)+(1)/(b)gt (4)/(a+b)`
or ` (1)/(a)+(1)/(b)gt4`.
Hence, from (1)
From (i), ` (a+(1)/(a))^2+(b+(1)/(c))^2gt (1)/(2)(1+4)^2=(25)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise EXERCISES (Single Correct answer type)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If x gt 0 , prove that, x gt log (1+x) gt x/(1+x)

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

If for two reals a, b, with |a| gt 1, |b| gt 1, x = 1 + (1)/(a) + (1)/(a^(2))+… and y = 1 + (1)/(b) + (1)/(b^(2))+…. then show that the um of the series 1+1ab+a^(2)b^(2) +… = (1-x - y + xy)/(1-x-y)

If ab = 2a +3b, a gt0, b gt 0, then the minimum value of ab is-

If x gt 0 , show that, x gt log (x^(2)+1)

If x gt 0 , prove that, log (x+sqrt(1+x^(2))) gt tan^(-1)x

If 2^a=3^b=6^(-c) , then prove that (1)/(a)+(1)/(b)+(1)/(c )=0 .

If x gt 0 , show that, x^(2) gt (1+x) [log (1+x)]^(2)

If x gt 0 , show that, x gt log (1+x) gt x-x^(2)/2 .

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.