Home
Class 12
MATHS
The set S:{1,2,3…………12} is to be partiti...

The set `S:{1,2,3…………12}` is to be partitioned into three sets A,B,C of equal size. Thus `A cup B cup C=S, A cap B =B cap C=A cap C=phi` The number of ways to partition S is :

A

`(12 !)/(3!(4!)^3)`

B

`(12!)/(3!(4!)^4)`

C

`(12!)/(3!(4!)^3)`

D

`(12!)/(3!)^4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of partitioning the set \( S = \{1, 2, 3, \ldots, 12\} \) into three sets \( A, B, C \) of equal size, we need to follow these steps: ### Step 1: Determine the size of each set Since the total number of elements in set \( S \) is 12 and we want to partition it into three sets of equal size, each set will have: \[ \text{Size of each set} = \frac{12}{3} = 4 \] ### Step 2: Choose elements for set A We first choose 4 elements from the 12 elements to form set \( A \). The number of ways to choose 4 elements from 12 is given by the combination formula \( \binom{n}{r} \): \[ \text{Ways to choose A} = \binom{12}{4} \] ### Step 3: Choose elements for set B After choosing set \( A \), we have 8 elements left. Now, we need to choose 4 elements from these 8 to form set \( B \): \[ \text{Ways to choose B} = \binom{8}{4} \] ### Step 4: Assign remaining elements to set C The remaining 4 elements will automatically go to set \( C \). Therefore, there is only 1 way to assign these elements: \[ \text{Ways to choose C} = 1 \] ### Step 5: Account for the indistinguishability of sets Since the sets \( A, B, C \) are indistinguishable (the order in which we choose them does not matter), we need to divide by the number of ways to arrange these 3 sets, which is \( 3! \): \[ \text{Total arrangements} = \frac{\binom{12}{4} \cdot \binom{8}{4}}{3!} \] ### Step 6: Calculate the combinations Now we can calculate the combinations: \[ \binom{12}{4} = \frac{12!}{4!(12-4)!} = \frac{12!}{4!8!} = 495 \] \[ \binom{8}{4} = \frac{8!}{4!(8-4)!} = \frac{8!}{4!4!} = 70 \] ### Step 7: Substitute values into the total arrangements formula Now we substitute the values into the total arrangements formula: \[ \text{Total arrangements} = \frac{495 \cdot 70}{6} \] ### Step 8: Perform the final calculation Calculating the above expression: \[ 495 \cdot 70 = 34650 \] \[ \frac{34650}{6} = 5775 \] ### Final Answer The number of ways to partition the set \( S \) into three sets \( A, B, C \) of equal size is: \[ \boxed{5775} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SET-1 True of false|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SET -1 FILL IN THE BLANKS |1 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos

Similar Questions

Explore conceptually related problems

Prove A cup (B cap C)=(A cup B) cap(A cup C)

For sets (A cup B) cup ( A cap B) equals

ML KHANNA-PERMUTATIONS AND COMBINATIONS -SELF ASSESSMENT TEST
  1. The set S:{1,2,3…………12} is to be partitioned into three sets A,B,C of ...

    Text Solution

    |

  2. sum(r=0)^m "^(n+r) Cn is equal to

    Text Solution

    |

  3. A polygon has 44 diagonals , then the number of its sides is

    Text Solution

    |

  4. If 7 points out of 12 are in the same straight line, then what is the ...

    Text Solution

    |

  5. All the letters of the word EAMCET are arranged in all possible ways. ...

    Text Solution

    |

  6. Out of 10 red and 8 white balls , 5 red and 4 white balls can be drawn...

    Text Solution

    |

  7. 7 men and 7 women are to sit round a table so that there is a man on e...

    Text Solution

    |

  8. The number of seven digit integers with sum of the digits equal to 10 ...

    Text Solution

    |

  9. The total number of ways in which 5 balls of differ- ent colours can b...

    Text Solution

    |

  10. Assuming the balls to be identical except for difference in colours, t...

    Text Solution

    |

  11. How many different words can be formed by jumbling the letters of the ...

    Text Solution

    |

  12. The number of numbers, that can be formed by using all digits 1,2, 3, ...

    Text Solution

    |

  13. How many words can be formed with the letters o the word MATHEMATICS b...

    Text Solution

    |

  14. In how many ways 7 men and 7 women can sit on a round table such that ...

    Text Solution

    |

  15. If ^15 C(3r)=^(15)C(r+3) , then find rdot

    Text Solution

    |

  16. IF ""^n C12=""^nC6 then "^n C2=

    Text Solution

    |

  17. There are n points in a place in which p point are collinear. How many...

    Text Solution

    |

  18. There are 10 points in a plane, out of these 6 are collinear. The numb...

    Text Solution

    |

  19. IF x,y,r are positive integers then ""^x Cr+""^x C(r-1) . ""^ y C1+ ...

    Text Solution

    |

  20. A dictionary is printed consisting of 7 lettered words only that can b...

    Text Solution

    |

  21. Let Tn be the number of all possible triangles formed by joining ve...

    Text Solution

    |