Home
Class 12
MATHS
If Dr=|(r,x,(n(n+1))/2),(2r,1,n^2),(3r,...

If `D_r=|(r,x,(n(n+1))/2),(2r,1,n^2),(3r,-2,(n(3n-1))/2)|` then `sum_(r=1)^nD_r=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \( D_r \) and then find the value of \( x \) such that the summation \( \sum_{r=1}^{n} D_r = 0 \). ### Step-by-Step Solution: 1. **Write the Determinant:** \[ D_r = \begin{vmatrix} r & x & \frac{n(n+1)}{2} \\ 2r & 1 & n^2 \\ 3r & -2 & \frac{n(3n-1)}{2} \end{vmatrix} \] 2. **Factor out \( r \):** Since \( r \) is common in the first column, we can factor it out: \[ D_r = r \begin{vmatrix} 1 & x & \frac{n(n+1)}{2} \\ 2 & 1 & n^2 \\ 3 & -2 & \frac{n(3n-1)}{2} \end{vmatrix} \] 3. **Perform Row Operations:** We perform row operations to simplify the determinant: - Replace \( R_2 \) with \( R_2 - 2R_1 \) - Replace \( R_3 \) with \( R_3 - 3R_1 \) \[ D_r = r \begin{vmatrix} 1 & x & \frac{n(n+1)}{2} \\ 0 & 1 - 2x & n^2 - n(n+1) \\ 0 & -2 - 3x & \frac{n(3n-1)}{2} - 3 \cdot \frac{n(n+1)}{2} \end{vmatrix} \] 4. **Simplify the Second and Third Rows:** Calculate the entries of the second and third rows: - For the second row, the third column becomes: \[ n^2 - \frac{n(n+1)}{2} = \frac{2n^2 - n^2 - n}{2} = \frac{n^2 - n}{2} \] - For the third row, the third column becomes: \[ \frac{n(3n-1)}{2} - \frac{3n(n+1)}{2} = \frac{3n^2 - n - 3n^2 - 3n}{2} = \frac{-4n}{2} = -2n \] 5. **Write the Simplified Determinant:** Now, we have: \[ D_r = r \begin{vmatrix} 1 & x & \frac{n(n+1)}{2} \\ 0 & 1 - 2x & \frac{n^2 - n}{2} \\ 0 & -2 - 3x & -2n \end{vmatrix} \] 6. **Calculate the Determinant:** The determinant can be calculated using the first column: \[ D_r = r \left( 1 \cdot \left( (1 - 2x)(-2n) - (-2 - 3x) \cdot \frac{n^2 - n}{2} \right) \right) \] This simplifies to: \[ D_r = r \left( -2n(1 - 2x) + (2 + 3x) \cdot \frac{n^2 - n}{2} \right) \] 7. **Set Up the Summation:** We know that: \[ \sum_{r=1}^{n} D_r = 0 \] This implies: \[ \sum_{r=1}^{n} r \left( -2n(1 - 2x) + (2 + 3x) \cdot \frac{n^2 - n}{2} \right) = 0 \] 8. **Factor Out Constants:** Since \( n \) and \( n+1 \) are not zero, we can factor them out: \[ n(n+1) \left( x - 4 \right) = 0 \] This leads to: \[ x - 4 = 0 \implies x = 4 \] ### Final Answer: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let "Delta"_r=|r x(n(n+1))/2 2r-1y n^2 3r-2z(n(3n-1))/2| . Show that sum_(r=1)^n"Delta"_r=0 .

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

If Dr=|[r,n+1,1],[r^2,2n-1,(2n+1)/3],[r^3,3n+2,(n(n+1))/2]|, show that sum_(r=1)^n Dr=0

If A_r=|[1,r,2^r],[2,n,n^2],[n,(n(n+1))/2, 2^(n+1)]|, the value of sum_(r=1)^n A_r is (A) n (B) 2n (C) -2n (D) n^2

Suppose n epsilon N and for 1lerlen Let Deltar=|(3r-2,2020,3n-1),(2r-1,2025,2n),(r,2029,n+1)| then 1/(3n) sum_(r=1)^(n)(Delta_(r)+6) is equal to __________